\(\dfrac{5}{4x^3+4x+2y+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Bài 1: Ta có: \(B=\dfrac{4+2\left|4-2x\right|}{5}\)

Do \(\left|4-2x\right|\ge0\left(\forall x\right)\Rightarrow2\left|4-2x\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4-2x\right|=0\Leftrightarrow x=2\)

\(\Rightarrow MinB=\dfrac{4+2.0}{5}=\dfrac{4}{5}\)

Vậy GTNN của \(B=\dfrac{4}{5}\Leftrightarrow x=2\)

Bài 2:a, \(A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\)

Do \(\left|5x+1\right|\ge0\left(\forall x\right);\left|2y-1\right|\ge0\left(\forall y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

\(\Rightarrow\left|5x+1\right|+\left|2y-1\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\left(\forall x;y\right)\)

\(\Rightarrow\dfrac{1}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{1}{3}\left(\forall x;y\right)\)

\(\Rightarrow A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le4\left(\forall x;y\right)\)

Vậy Max A = 4 \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

b, \(B=\dfrac{5}{\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+1}=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\)Bn tự cm: \(\left(2x+1\right)^2+\left(y+1\right)^2+1\ge1\left(\forall x;y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

Vậy ta cx dễ dàng tìm được: Max\(B=\dfrac{5}{0+0+1}=5\) \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

14 tháng 10 2017

a,

\(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2\)

\(=>A=\dfrac{x^2+4x+6}{3}\ge\dfrac{2}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2/3 , dấu ''='' xảy ra khi và chỉ khi x = -2 .

b, \(Ta,c\text{ó}:\left|1-2x\right|\ge0\)

\(=>4+\left|1-2x\right|\ge4\)

\(=>\dfrac{4+\left|1+2x\right|}{5}\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của biểu thức là 4/5 , dấu bằng xảy ra khi và chỉ khi 1 - 2x = 0 => x = 1/2

c,

\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)

\(=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\ge\dfrac{5}{1}=5\)

Vậy giá trị nhỏ nhất của biểu thức là 5 , dấu '='' xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}2x+1=0\\y+1=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)

26 tháng 8 2017

\(K=\dfrac{3-4x}{x^2+1}\)

\(\Leftrightarrow Kx^2+1=3-4x\)

\(\Leftrightarrow Kx^2+4x+K-3=0\)

Để phương thức trên tồn tại \(x\) thì:

\(\text{4-K.(K-3)=K^2}+3K+4\ge0\)

\(\Leftrightarrow K^2-3.K-4\le0\)

\(\Leftrightarrow\left(K+1\right).\left(K-4\right)\le0\)

\(\Leftrightarrow-1\le K\le4\)

Vậy \(MIN\left(K\right)=-1\)

\(MAX\left(K\right)=4\)

26 tháng 8 2017

chet tui lon roi ma thôi xem như bo thi cho ba hahahehe

19 tháng 8 2024

B = 2\(x^2\) - 4\(x\) - 8

B = 2(\(x^2\) - 2\(x\) + 4)  - 16

B = 2(\(x-2\))2 - 16 

Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)

⇒ 2(\(x-2\)) - 16 ≥ -16 ∀ \(x\)

Dấu bằng xảy ra khi  (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)

Vậy Bmin = -16 khi \(x=2\)

19 tháng 8 2024

Tìm min của C biết:

C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17

C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1

C = (\(x\) - y)2 + 2(\(x\) - y) + 1  + (y2 - 8y + 16) 

C = (\(x-y+1\))2 + (y - 4)2 

Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)

 

 

29 tháng 11 2017

a) \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)

\(=\dfrac{\left(4x-1\right)-\left(7x-1\right)}{3x^2y}\)

\(=\dfrac{4x-1-7x+1}{3x^2y}\)

\(=\dfrac{-3x}{3x^2y}\)

\(=\dfrac{-1}{xy}\)

b) \(\dfrac{4x+5}{2x-1}-\dfrac{5-9x}{2x-1}\)

\(=\dfrac{\left(4x+5\right)-\left(5-9x\right)}{2x-1}\)

\(=\dfrac{4x+5-5+9x}{2x-1}\)

\(=\dfrac{13x}{2x-1}\)

c) \(\dfrac{11x}{2x-3}-\dfrac{x-18}{3-2x}\)

\(=\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)

\(=\dfrac{11x+\left(x-18\right)}{2x-3}\)

\(=\dfrac{11x+x-18}{2x-3}\)

\(=\dfrac{12x-18}{2x-3}\)

\(=\dfrac{6\left(2x-3\right)}{2x-3}\)

\(=\dfrac{6}{1}\)

\(=6\)

d) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)

\(=\dfrac{2x-7}{10x-4}+\dfrac{3x+5}{10x-4}\)

\(=\dfrac{\left(2x-7\right)+\left(3x+5\right)}{10x-4}\)

\(=\dfrac{2x-7+3x+5}{10x-4}\)

\(=\dfrac{5x-2}{10x-4}\)

\(=\dfrac{5x-2}{2\left(5x-2\right)}\)

\(=\dfrac{1}{2}\)

21 tháng 4 2017

Giải bài 29 trang 50 Toán 8 Tập 1 | Giải bài tập Toán 8

Mình giải phương pháp tìm miền giá trị

\(A=\dfrac{4x+3}{x^2+1}\)

\(\Leftrightarrow Ax^2-4x+A-3=0\)(1)

+)Xét A=0\(\Rightarrow-4x-3=0\Leftrightarrow x=-\dfrac{3}{4}\)

+)Xét \(A\ne0\)

=>Để pt(1) có nghiệm thì \(\Delta=16-4A\left(A-3\right)\ge0\)

\(\Leftrightarrow4-A\left(A-3\right)\ge0\)

\(\Leftrightarrow-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(-A-1\right)\ge0\)

\(\Leftrightarrow-1\le A\le4\)

Vậy \(MINA=-1\Leftrightarrow\)x=-2

\(MAX=4\Leftrightarrow x=\)\(\dfrac{1}{2}\)