Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(B=4x^2+4x+2\)
\(=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1\)
Nhận thấy: \(\left(2x+1\right)^2\ge0\)
=> \(\left(2x+1\right)^2+1>0\)
hay B luôn dương
a)
A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)
b)
C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
Bài 1:
a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)
=>đpcm
b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)
=>đpcm
Bài 2:
\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)
Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2
\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)
Vậy x=5 thì B đạt GTLN là -3
A = 25x2 + 3 - 10x
= (5x)2 - 2 . 5x . 1 + 1 + 2
= (5x - 1)2 + 2
(5x - 1)2 lớn hơn hoặc bằng 0
(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0
Vậy A > 0 vs mọi x (đpcm)
B = - 9x2 - 2 + 6x
= - [(3x)2 - 2 . 3x . 1 + 1 + 1]
= - [(3x - 1)2 + 1]
(3x - 1)2 lớn hơn hoặc bằng 0
(3x - 1)2 + 1 lớn hơn hoặc bằng 1
- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng - 1 < 0
Vậy B < 0 với mọi x (đpcm)
***
A = 4x2 - 4x + 3
= (2x)2 - 2 . 2x . 1 + 1 + 2
= (2x - 1)2 + 2
(2x - 1)2 lớn hơn hoặc bằng 0
(2x - 1)2 + 2 lớn hơn hoặc bằng 2
Min A = 2 khi x = 1/2
B = -x2 + 10x - 28
= - [x2 - 2 . x . 5 + 25 + 3]
= - [(x - 5)2 + 3]
(x - 5)2 lớn hơn hoặc bằng 0
(x - 5)2 + 3 lớn hơn hoặc bằng 3
- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3
Vậy Max B = 3 khi x = 5
B=-3(x2-3x)
B=-3(x2-2\(\frac{3}{2}\)x+\(\frac{9}{4}\)-\(\frac{9}{4}\))
B=-3(x-\(\frac{3}{2}\))2+\(\frac{27}{4}\)
Vậy GTLN của B là \(\frac{27}{4}\)hay 6, 25
Bài 1:
a) Ta có: \(A=x^2-8x+15\)
\(=x^2-2\cdot x\cdot4+16-1\)
\(=\left(x-4\right)^2-1\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-4\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi x-4=0
hay x=4
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-8x+15\) là -1 khi x=4
b) Sửa đề: \(B=3x^2-9x+7\)
Ta có: \(B=3x^2-9x+7\)
\(=3\left(x^2-3x+\frac{7}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=3x^2-9x+7\) là \(\frac{1}{4}\) khi \(x=\frac{3}{2}\)
c) Ta có: \(C=-2x^2+5x+2\)
\(=-2\left(x^2-\frac{5}{2}x-1\right)\)
\(=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{41}{8}\)
Ta có: \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{4}=0\)
hay \(x=\frac{5}{4}\)
Vậy: Giá trị lớn nhất của biểu thức \(C=-2x^2+5x+2\) là \(\frac{41}{8}\) khi \(x=\frac{5}{4}\)
d) Ta có: \(9x^2-125x+5\)
\(=9\left(x^2-\frac{125}{9}x+\frac{5}{9}\right)\)
\(=9\left(x^2-2\cdot x\cdot\frac{125}{18}+\frac{15625}{324}-\frac{15445}{324}\right)\)
\(=9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}\)
Ta có: \(\left(x-\frac{125}{18}\right)^2\ge0\forall x\)
\(\Rightarrow9\left(x-\frac{125}{18}\right)^2\ge0\forall x\)
\(\Rightarrow9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}\ge-\frac{15445}{36}\forall x\)
\(\Rightarrow\frac{2}{9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}}\le\frac{2}{-\frac{15445}{36}}=-\frac{72}{15445}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{125}{18}=0\)
hay \(x=\frac{125}{18}\)
Vậy: Giá trị lớn nhất của biểu thức \(D=\frac{2}{9x^2-125x+5}\) là \(-\frac{72}{15445}\) khi \(x=\frac{125}{18}\)
\(E=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\Rightarrow E_{min}=-\frac{5}{4}\) khi \(x=-\frac{3}{2}\)
\(F=\left(x^2+5x+4\right)\left(x^2+5x+6\right)=\left(x^2+5x+4\right)+2\left(x^2+5x+4\right)+1-1\)
\(F=\left(x^2+5x+5\right)^2-1\ge-1\)
\(\Rightarrow E_{min}=-1\) khi \(x^2+5x+5=0\Rightarrow x=\frac{-5\pm\sqrt{5}}{2}\)
\(M=\frac{2}{-4-\left(3x-1\right)^2}\ge\frac{2}{-4}=-\frac{1}{2}\Rightarrow M_{min}=-\frac{1}{2}\) khi \(x=\frac{1}{3}\)
\(P=\frac{x^2+2x+3}{x^2+2}\Rightarrow Px^2+2P=x^2+2x+3\)
\(\Rightarrow\left(P-1\right)x^2-2x+2P-3=0\)
\(\Delta'=1-\left(P-1\right)\left(2P-3\right)\ge0\)
\(\Leftrightarrow-2P^2+5P-2\ge0\Rightarrow\frac{1}{2}\le P\le2\)
\(\Rightarrow P_{max}=2\) khi \(x=1\)
\(P_{min}=\frac{1}{2}\) khi \(x=-2\)