Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2-5y^2+2xy-4x+20y+13\)
\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)
\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)
\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)
\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)
\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)
\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
\(B=-7x^2-y^2+4xy+16x-2y+17.\)
\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)
\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)
\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)
\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)
\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
B=9x-3x2
B=-(3x2-9x)=-3(x2-3x)=-3(x2-2.1,5x+2,25-2,25)=-3(x-1,5)2+6,75
=>Bmax=6,75 xấp xỉ 6,8
tick giùm mình nha! :))
\(9x^2 +4y^2=20xy\)
\(\Rightarrow9x^2-20xy+4y^2=0\)
\(\Rightarrow9x^2-18xy-2xy+4y^2=0\)
\(\Rightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(9x-2y\right)=0\)
\(\Rightarrow9x=2y\) (vì \(x< 2y\Rightarrow x-2y\ne0\) )
\(\Rightarrow\frac{x}{2}=\frac{y}{9}\)
Đặt \(\frac{x}{2}=\frac{y}{9}=t\Rightarrow x=2t,y=9t\)
Ta có: \(A=\frac{3.2t-2.9t}{3.2t+2.9t}=-\frac{12t}{24t}=-\frac{1}{2}\)
Chúc bạn học tốt.
B=-3(x2-3x)
B=-3(x2-2\(\frac{3}{2}\)x+\(\frac{9}{4}\)-\(\frac{9}{4}\))
B=-3(x-\(\frac{3}{2}\))2+\(\frac{27}{4}\)
Vậy GTLN của B là \(\frac{27}{4}\)hay 6, 25
Àh, 6,75 nhá, t viết nhầm