K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)

\(A=4x^2-12x+9-x^2-4x+5+2\)

\(A=3x^2-12x+16\)

\(A=3\left(x^2-4x+4\right)\)

\(A=3\left(x-2\right)^2\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow x=2\)

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)

\(=4x^2-12x+9-x^2-4x+5+2\)

\(=3x^2-16x+16\)

\(=3\left(x^2-\frac{16}{3}x+16\right)\)

\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)

\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)

dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)

\(\Leftrightarrow x=\frac{8}{3}\)

vậy...

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

a,A.B=(-2x2+3x+5)(x2-x+3)

=-2x4+3x3+5x2+2x3-3x2-5x-6x2+9x+15

=-2x4+5x3-4x2+4x+15

24 tháng 6 2019

Trả lời : 

a, A . B = ( -2x+ 3x + 5 ) . ( x2 - x + 3 )

    A . B = -2x+ 2x3 - 6x+ 3x3 - 3x2 + 9x + 5x2  - 5x + 15

    A . B = -2x4 + 5x- 4x+ 4x + 15   

~ Hok tốt ~

11 tháng 8 2019

1) A=\(-2\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+8\)

\(=-2\left(x-1\right)^2-\left(y-1\right)^2+8\)

Vì \(\hept{\begin{cases}-2\left(x-1\right)^2\le0;\forall x\\-\left(y-1\right)^2\le0;\forall y\end{cases}}\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2\le0;\forall x,y\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2+8\le0+8;\forall x,y\)

Hay \(A\le8;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-2\left(x-1\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy MAX A=8 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Phần kia tương tự

11 tháng 8 2019

1> A = -2x2 - y2 -2xy + 4x + 2y + 5

= -(x2 + y2 + 2xy - 2x - 2y + 1)-(x2 - 2x + 1)+7

= -(x + y - 1)2 - (x-1)2 + 7

Ta thấy: \(-\left(x+y-1\right)^2\le0;-\left(x-1\right)^2\le0\)

Nên A \(\le\)7. Dấu "=" xảy ra <=> x = 1 , y = 0

2> Ghép từng cặp x vs x; y vs y ; z vs z

21 tháng 3 2019

\(4.\)

\(a.A=5-8x-x^2\)

\(=-\left(16+8x+x^2\right)+21\)

\(=-\left(4+x\right)^2+21\le21\)

\(A_{max}=21\)

Dấu '='xảy ra khi \(x=-4\)

\(b.B=5-x^2+2x-4y^2-4y\)

\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)

\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)

\(B_{max}=10\)

Dấu '=' xảy ra khi \(x=1;y=-1\)

\(5.\)

\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)

              \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

              \(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

              \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

              \(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)

              hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)

             hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)

\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

hay\(b+2=0\Leftrightarrow b=-2\)

hay\(2c-2=0\Leftrightarrow c=1\)

V...

^^

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha