Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a, \(A=4-2x^2\le4\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN A là 4 khi x = 0
b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)
\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5
Vậy GTLN B là 20 khi x = 5
c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)
\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)
Vậy GTLN C là -17/7 khi x = 1/2
d, tương tự
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
Bài 1:
a) Ta có: \(A=x^2-8x+15\)
\(=x^2-2\cdot x\cdot4+16-1\)
\(=\left(x-4\right)^2-1\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-4\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi x-4=0
hay x=4
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-8x+15\) là -1 khi x=4
b) Sửa đề: \(B=3x^2-9x+7\)
Ta có: \(B=3x^2-9x+7\)
\(=3\left(x^2-3x+\frac{7}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=3x^2-9x+7\) là \(\frac{1}{4}\) khi \(x=\frac{3}{2}\)
c) Ta có: \(C=-2x^2+5x+2\)
\(=-2\left(x^2-\frac{5}{2}x-1\right)\)
\(=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{41}{8}\)
Ta có: \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{4}=0\)
hay \(x=\frac{5}{4}\)
Vậy: Giá trị lớn nhất của biểu thức \(C=-2x^2+5x+2\) là \(\frac{41}{8}\) khi \(x=\frac{5}{4}\)
d) Ta có: \(9x^2-125x+5\)
\(=9\left(x^2-\frac{125}{9}x+\frac{5}{9}\right)\)
\(=9\left(x^2-2\cdot x\cdot\frac{125}{18}+\frac{15625}{324}-\frac{15445}{324}\right)\)
\(=9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}\)
Ta có: \(\left(x-\frac{125}{18}\right)^2\ge0\forall x\)
\(\Rightarrow9\left(x-\frac{125}{18}\right)^2\ge0\forall x\)
\(\Rightarrow9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}\ge-\frac{15445}{36}\forall x\)
\(\Rightarrow\frac{2}{9\left(x-\frac{125}{18}\right)^2-\frac{15445}{36}}\le\frac{2}{-\frac{15445}{36}}=-\frac{72}{15445}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{125}{18}=0\)
hay \(x=\frac{125}{18}\)
Vậy: Giá trị lớn nhất của biểu thức \(D=\frac{2}{9x^2-125x+5}\) là \(-\frac{72}{15445}\) khi \(x=\frac{125}{18}\)