Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức bậc nhất `P(x)` có dạng: `P(x) = ax + b`
Ta có: `P(1) = 5 => a + b = 5 => a = 5 - b`
`P(-1) = 1 => -a + b = 1`
`=> - ( 5 - b ) + b= 1`
`=> -5 + b + b = 1`
`=> 2b = 6`
`=> b = 3`
Thay `b = 3` vào `a = 5 - b` có: `a = 5 - 3 = 2`
Vậy đa thức `P(x) = 2x + 3`
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
Vì P(x) là đa thức bậc nhất nên P(x) có dạng ax+b
Ta có :
P(1)=a.1+b=a+b (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1) và (2) ta có a=b
=> Đa thức bậc nhất P(x) có dạng a(x+1)
Vì P(x) là đa thức bậc nhất nên nên P(x) có dạng ax+3
Ta có: P(1)=a.1+b=0 (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1),(2) suy ra a=b
Suy ra đa thức bậc nhất P(x) có dạng a(x+1)