K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Vì P(x) là đa thức bậc nhất nên P(x) có dạng ax+b

Ta có :

P(1)=a.1+b=a+b                                      (1)

P(-1)=a.(-1)+b=b-a                                   (2)

Từ (1) và (2) ta có a=b

=> Đa thức bậc nhất P(x) có dạng a(x+1)

21 tháng 4 2017

Vì P(x) là đa thức bậc nhất nên nên P(x) có dạng ax+3

Ta có: P(1)=a.1+b=0         (1)

          P(-1)=a.(-1)+b=b-a                 (2)

Từ (1),(2) suy ra a=b

Suy ra đa thức bậc nhất P(x) có dạng a(x+1)

18 tháng 4 2022

Gọi đa thức bậc nhất `P(x)` có dạng: `P(x) = ax + b`

Ta có: `P(1) = 5 => a + b = 5 => a = 5 - b`

          `P(-1) = 1 => -a + b = 1`

    `=> - ( 5 - b ) +  b= 1`

    `=>  -5 + b + b = 1`

    `=> 2b = 6`

    `=> b = 3`

Thay `b = 3` vào `a = 5 - b` có: `a = 5 - 3 = 2`

Vậy đa thức `P(x) = 2x + 3`

23 tháng 4 2018

mình mới học lớp 6

23 tháng 4 2018

em mới hok lp 5

4 tháng 4 2020

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0

Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)

\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)

2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)

g(x) có bậc 1 => a-1=0 => a=1. Khi đó

\(g\left(x\right)=2x+b\)lại có g(2)=1

\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)

3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)

h(x) có bậc 2 => 5-a=0 => a=5

Khi đó h(x)=-7x2+8x-b

h(-1)=3 => -7(-1)2+8.(-1)+b=3

<=> -7-8+b=3 => b=18

4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1

r(x) bậc 2 => a+4=0 => a=-4

r(2)=5 => (-4).22+b.2-1=5

<=> -16+2b-1=5

<=> 2b=22 => b=11

13 tháng 4 2019

a)      A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2

= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12

b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4  +  x2 + 2018 > 0 với mọi x

Vậy đa thức A(x) không có nghiệm.

c) Tìm được P(x) = -2x + 3