K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
HT
0
NT
2
21 tháng 4 2017
Vì P(x) là đa thức bậc nhất nên P(x) có dạng ax+b
Ta có :
P(1)=a.1+b=a+b (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1) và (2) ta có a=b
=> Đa thức bậc nhất P(x) có dạng a(x+1)
21 tháng 4 2017
Vì P(x) là đa thức bậc nhất nên nên P(x) có dạng ax+3
Ta có: P(1)=a.1+b=0 (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1),(2) suy ra a=b
Suy ra đa thức bậc nhất P(x) có dạng a(x+1)
CB
1
AH
Akai Haruma
Giáo viên
30 tháng 5 2020
Lời giải:
Ta có:
\(P(-1)=a(-1)+b=-a+b=5\Rightarrow b=5+a\)
\(P(-2)=a(-2)+b=-2a+b=7\)
Thay $b=5+a$ ta có: $-2a+5+a=7$
$\Rightarrow a=-2\Rightarrow b=3$
Vậy đa thức cần tìm là $P(x)=-2x+3$
K
1
Gọi đa thức bậc nhất `P(x)` có dạng: `P(x) = ax + b`
Ta có: `P(1) = 5 => a + b = 5 => a = 5 - b`
`P(-1) = 1 => -a + b = 1`
`=> - ( 5 - b ) + b= 1`
`=> -5 + b + b = 1`
`=> 2b = 6`
`=> b = 3`
Thay `b = 3` vào `a = 5 - b` có: `a = 5 - 3 = 2`
Vậy đa thức `P(x) = 2x + 3`