Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức bậc nhất `P(x)` có dạng: `P(x) = ax + b`
Ta có: `P(1) = 5 => a + b = 5 => a = 5 - b`
`P(-1) = 1 => -a + b = 1`
`=> - ( 5 - b ) + b= 1`
`=> -5 + b + b = 1`
`=> 2b = 6`
`=> b = 3`
Thay `b = 3` vào `a = 5 - b` có: `a = 5 - 3 = 2`
Vậy đa thức `P(x) = 2x + 3`
Vì P(x) là đa thức bậc nhất nên P(x) có dạng ax+b
Ta có :
P(1)=a.1+b=a+b (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1) và (2) ta có a=b
=> Đa thức bậc nhất P(x) có dạng a(x+1)
Vì P(x) là đa thức bậc nhất nên nên P(x) có dạng ax+3
Ta có: P(1)=a.1+b=0 (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1),(2) suy ra a=b
Suy ra đa thức bậc nhất P(x) có dạng a(x+1)
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm