K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0

Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)

\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)

2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)

g(x) có bậc 1 => a-1=0 => a=1. Khi đó

\(g\left(x\right)=2x+b\)lại có g(2)=1

\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)

3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)

h(x) có bậc 2 => 5-a=0 => a=5

Khi đó h(x)=-7x2+8x-b

h(-1)=3 => -7(-1)2+8.(-1)+b=3

<=> -7-8+b=3 => b=18

4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1

r(x) bậc 2 => a+4=0 => a=-4

r(2)=5 => (-4).22+b.2-1=5

<=> -16+2b-1=5

<=> 2b=22 => b=11

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

29 tháng 6 2018

1. Ta có: h(1)=2 ⇔ a1+b=2 ⇔ b=2-a (1) h(2)=1 ⇔ a2+b=1 ⇔ b=1-2a (2) Từ (1) và (2) => 2-a=1-2a⇔2-1=a-2a⇔1=-a=> a=-1

Thay a=-1 vào (1) ta có: b=2-(-1) => b=3

Vậy b=3 và a=-1

29 tháng 6 2018

Mọi người ơi giúp mình đi mà

4 tháng 4 2020

Mik biết 1 câu mấy

1. \(f\left(1\right)=a.1^2+b.1+6\)

\(=a+b+6=3\)

\(=a+6=6-3\)

\(=a+b=3\)

Để đa thức f(x) có bậc là 1 thì a phải là 0

Vậy a=0 và b= -3

20 tháng 10 2024

mình đéo biết làm bài đó :)

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

6 tháng 3 2018

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

6 tháng 3 2018

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-