Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P và P + 14 là số nguyên tố => P là số lẻ . Vì nếu P chẵn thì P = 2, P + 14 = 16 \((\text{là hợp số }\Rightarrow\text{vô lí})\)
P + 7 = lẻ + lẻ = chẵn => P + 7 là hợp số
Tk mk nhé
Ta có P là số nguyên tố => p lẻ và 7 lẻ => p + 7 = lẻ + lẻ = chẵn chia hết cho 2 và p + 7 > 2
1/
a/ Hai số nguyên liên tiếp bao giờ cũng có 1 số chẵn và 1 số lẻ nên 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn chia hết cho 2
b/ Gọi 3 số nguyên liên tiếp là n; n+1, n+2
+ Nếu n chia hết cho 3 thì n+1 chia 3 dư 1 và n+2 chia 3 dư 2
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 còn n+1 chia 3 dư 2
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 còn n+2 chia 3 dư 1
Nên trong 3 số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c/ Trong 2 số nguyên liên tiếp chỉ có 1 số duy nhất chia hết cho 2. Trong 3 số nguyên liên tiếp chỉ có duy nhất 1 số chia hết cho 3 nên tích của chúng chia hết cho 6
2
a/ a-b chia hết cho 5
=> a-b-5b có a-b chia hết cho 5 và 5b chia hết cho 5 nên a-b-5b=a-6b chia hết cho 5
b/ Ta có a-6b+a-b có a-6b chia hết cho 5 (câu a) và a-b chia hết cho 5 (đề bài) nên a-6b+a-b=2a-7b chia hết cho 5
c/ Ta có (a-b)+(25a-15b+2000) có a-b chia hết cho 5 (đề bài) và 25a-15b+2000 chia hết cho 5 nên a-b+25a-15b+2000=26a-21b+2000 chia hết cho 5
a) S chia het cho 5 hien nhien => S la hop so
b)4.S=(5^2017-5)
5^2017 hai so cuoi la 25
(5^2017-5 hai so cuoi tan cung 20 kho chinh phuomg=> s ko chinh phuong
c) kq cau (b)=> x=1
d)4.s+1=5^2017-5+1=5^n
5^n+4=5^2017 vo nghiem nguyen
Bài 1 : Gọi a là số tổ cần chia ( a thuộc N*)
24 chia hết cho a => a thuộc Ư(24) và a nhiều nhất
108 chia hết cho a => a thuộc Ư(108) và a nhiều nhất
Vậy a là ƯCLN (24,108)
Mà ƯCLN (24,108)=12 => a=12
Khi đó mỗi tổ có:
-Số bác sĩ: 24 : 12=2
- Số y tá: 108:12= 9
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3