Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=1\cdot13+...+3^9\cdot13\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
b)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=1\cdot40+...+3^8\cdot40\)
\(=40\cdot\left(1+...+3^8\right)⋮40\)
c)\(S=1+3+...+3^{11}\)
\(3S=3\left(1+3+...+3^{11}\right)\)
\(3S=3+3^2+...+3^{12}\)
\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)
\(2S=3^{12}-1\)
\(S=\frac{3^{12}-1}{2}\)
Ta có : 1 + 2 + 3 + ... + n = \(\dfrac{n\left(n+1\right)}{2}\)
Giả sử [(1 + 2 + 3 + ... + n) - 7 ] \(⋮10\)
=> \(\dfrac{n\left(n+1\right)}{2}-7⋮10\)
=> \(\dfrac{n\left(n+1\right)}{2}=\overline{...7}\)
Mà \(\dfrac{n\left(n+1\right)}{2}\) không bao giờ tận cùng bằng 7
=> \(\dfrac{n\left(n+1\right)}{2}-7\) không chia hết cho 10
=> [(1 + 2 + 3 + ... + n) - 7] không chia hết cho 10
=> đpcm
@An Le
1)
\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3
=> 3.7.(n+1)n chia hết cho 6
=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6
2)
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)
Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
12n chia hết cho 6
=>\(n^3-13n\) chia hết cho 6
3)
\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)
\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3
a)
Ta có
\(37^{37}=\left(37^4\right)^9.37=\left(\overline{..........1}\right).37=\left(\overline{..........7}\right)\)
\(23^{23}=\left(23^4\right).23^3=\left(\overline{.........1}\right).12167=\left(\overline{.........7}\right)\)
\(\Rightarrow37^{36}-23^{23}=\left(\overline{........7}\right)-\left(\overline{.........7}\right)=\left(\overline{.............0}\right)\) chia hết cho 10
Bài 1: Tìm x.
a. 7x - 5 = 16
⇒ 7x = 16 + 5
⇒ 7x = 21
=> x = 21 : 7
=> x = 3
Vậy : x = 3
b. 156 - 2 = 82
c. 10x + 65 = 125
=> 10x = 125 - 65
=> 10x = 60
=> x = 60 : 10
=> x = 6
Vậy : x = 6
e. 15 + 5x = 40
=> 5x = 40 -15
=> 5x = 25
=> x = 25 : 5
=> x = 5
Vậy : x = 5
1/
a/ Hai số nguyên liên tiếp bao giờ cũng có 1 số chẵn và 1 số lẻ nên 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn chia hết cho 2
b/ Gọi 3 số nguyên liên tiếp là n; n+1, n+2
+ Nếu n chia hết cho 3 thì n+1 chia 3 dư 1 và n+2 chia 3 dư 2
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 còn n+1 chia 3 dư 2
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 còn n+2 chia 3 dư 1
Nên trong 3 số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c/ Trong 2 số nguyên liên tiếp chỉ có 1 số duy nhất chia hết cho 2. Trong 3 số nguyên liên tiếp chỉ có duy nhất 1 số chia hết cho 3 nên tích của chúng chia hết cho 6
2
a/ a-b chia hết cho 5
=> a-b-5b có a-b chia hết cho 5 và 5b chia hết cho 5 nên a-b-5b=a-6b chia hết cho 5
b/ Ta có a-6b+a-b có a-6b chia hết cho 5 (câu a) và a-b chia hết cho 5 (đề bài) nên a-6b+a-b=2a-7b chia hết cho 5
c/ Ta có (a-b)+(25a-15b+2000) có a-b chia hết cho 5 (đề bài) và 25a-15b+2000 chia hết cho 5 nên a-b+25a-15b+2000=26a-21b+2000 chia hết cho 5