K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2024

A = \(\dfrac{1+2+2^2+...+2^{2004}}{1+2^5+2^{10}+...+2^{2000}}\)

Đặt B =  1 + 2 + 22 + ... + 22004

      2B = 2 + 22 + 23 + ...+ 22005

      2B - B = (2 + 22 + 23 + ... + 22005) - (1 + 2 + 22 + .. + 22004)

       B = 2 + 22 + 23 + ... + 22005 - 1 - 2  - 22 - ... - 22004

      B = (2 - 2) + (22 - 22) + (23 - 23) + ... (22004 - 22004) + (22005 - 1)

      B = 22005 - 1

Đặt  C =  1  + 25 + 210 + ...   + 22000

     25C = 25 + 210 + 215 + ... + 22005

     32C - C = (25 + 210 + 215 + ... + 22005) - (1 + 25 + 210 +... +22000)

     31C      =  25 + 210 + 215 + ... + 22005 - 1 - 25 - 210 - ... - 22000

     31C      =(25 - 25) + (210 - 210) +...+ (22000 - 22000) + (22005 - 1)

     31C     = 22005 - 1

         C = \(\dfrac{2^{2005}-1}{31}\)

A = \(\dfrac{B}{C}\) = \(\dfrac{2^{2005}-1}{\dfrac{2^{2005}-1}{31}}\)

A = ( \(2^{2005}-1\)) x \(\dfrac{31}{2^{2005}-1}\)

A = 31

1 tháng 12 2017

Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!

\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)

\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)

\(D=\dfrac{1}{5}-\dfrac{2}{3}\)

\(D=-\dfrac{7}{15}\)

Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!

1 tháng 12 2017

làm H đi tui cx đang cằn

29 tháng 6 2018

câu B là \(2^{12}\) nha mấy bn

19 tháng 6 2019

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

9 tháng 7 2017

a)

\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)

\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{2004^2}\right)\)

Đặt :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.............+\dfrac{1}{2004^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..........................

\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{2003.2004}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)

\(\Leftrightarrow A< \dfrac{2003}{2004}\)

\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)

\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)

b) \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-........+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

\(\Leftrightarrow2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.....+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+....+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

\(\Leftrightarrow4S=1-\dfrac{1}{2^2}+.......+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+.......+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)

\(\Leftrightarrow4S+S=\left(1-\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)\(\Leftrightarrow5S=1-\dfrac{1}{2^{2004}}< 1\)

\(\Leftrightarrow S< \dfrac{1}{5}=0,2\)

\(\Leftrightarrow S< 0,2\left(đpcm\right)\)

19 tháng 2 2020

cho mik hỏi mik ko hiểu tại sao từ 1/2^4n-2 khi nhân với 2^2 lại ra đc 1/2^4n vậy? Xin hãy giải đáp giùm mik

19 tháng 11 2017

8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)

=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)

=\(\dfrac{9}{5}\)

hihahihahiha

28 tháng 2 2018

bay bị chập p

13 tháng 3 2017

Đặt \(A=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)

\(A=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\right)\)

Đặt \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\)

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2004^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2003\cdot2004}\)

\(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(B< 1-\dfrac{1}{2004}\)

\(\Rightarrow B< \dfrac{2003}{2004}\)

\(\Rightarrow1-B>1-\dfrac{2003}{2004}\)

\(\Rightarrow A>\dfrac{1}{2004}\left(đpcm\right)\)