K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!

\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)

\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)

\(D=\dfrac{1}{5}-\dfrac{2}{3}\)

\(D=-\dfrac{7}{15}\)

Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!

1 tháng 12 2017

làm H đi tui cx đang cằn

29 tháng 6 2018

câu B là \(2^{12}\) nha mấy bn

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

14 tháng 10 2024

 

????

 

19 tháng 11 2017

8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)

=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)

=\(\dfrac{9}{5}\)

hihahihahiha

28 tháng 2 2018

bay bị chập p

24 tháng 3 2017

Đặt B= \(\dfrac{2011}{1}+\dfrac{2010}{2}+.......+\dfrac{1}{2011}\)

Cộng 1 vào ta được:

B=(\(\dfrac{2012}{1}+\dfrac{2012}{2}+.......+\dfrac{2012}{2011}\)+\(\dfrac{2012}{2012}\)) -2012

-> B= 2012 (\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2011}\)+\(\dfrac{1}{2012}\)) -2012+\(\dfrac{2012}{1}\)

Thay vào P ta được:

P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)}\)

-> P= \(\dfrac{1}{2012}\)

có chỗ nào chưa hiểu hỏi mình nha!

6 tháng 10 2017

Bước 1: bạn cộng 1 vào từng hạng tử của mẫu:

\(\dfrac{2011}{1}+1\); \(\dfrac{2012}{2}+1\);....

Bước 2: Tính ra ta được:

\(\dfrac{2011}{1}+1\)=\(\dfrac{2012}{1}\); ....

Vì cộng một vào từng hạng tử và cộng thêm một vào cuối biểu thức (2012 hạng tử) nên phải từ đi 2012 để vẫn giữ nguyên giá trị biểu thức.

Bước 3: thấy trong ngoặc chung 2012 nên lấy 2012 ra và chuyển \(\dfrac{2012}{1}\)ra cuối cùng nên ta được biểu thức trên. Tính và được kết quả cuối cùng.

bước 4: thay vào P ta được: P=\(\dfrac{1}{2012}\)

vì giải thích trên máy nên hơi khó hiểu, bạn chịu khó nha~

19 tháng 4 2018

Tao có: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)

\(B>1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\right)\)

\(B>1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)

\(B>1-\left(1-\dfrac{1}{2004}\right)=1-1+\dfrac{1}{2004}=\dfrac{1}{2004}\left(đpcm\right)\)

2 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)}\)

\(=\frac{1}{2014}\)

Vậy \(A=\frac{1}{2014}\)

2 tháng 3 2017

Đặt B=\(2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)

=>B=\(\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{1}{2013}\right)\)

=\(\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}\)

=\(2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)\)

=>A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2013}}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)}=\dfrac{1}{2014}\)

Vậy ...