Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)
\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)
KQ = 3,2 cm
Khi qua VTCB, tốc độ của con lắc đạt cực đại là:
\(v_{max}=\omega A =\sqrt{\dfrac{k}{m}}.A\)
\(\Rightarrow m = \dfrac{kA^2}{v_{max}^2}=\dfrac{a}{v_{max}^2}\) (vì \(kA^2=const\))
Theo đề bài ta có: \(m_3=9m_1+4m_2\)
\(\Rightarrow \dfrac{a}{v_3^2}=\dfrac{9a}{v_1^2}+\dfrac{4a}{v_2^2}\)
\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{v_1^2}+\dfrac{4}{v_2^2}\)
\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{20^2}+\dfrac{4}{10^2}\)
\(\Rightarrow v_3=4m/s\)
Chọn đáp án B.
Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4
\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)
\(\Rightarrow T = \dfrac{\pi}{10}\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)
Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)
Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)
Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)
M O1 O2 d1 d2
M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.
Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)
\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)
\(\Rightarrow d_2= d_1+80=196+80=276cm\)
Chọn D
Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.
Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)
Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)
+ \(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)
+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)
\(\Rightarrow A = 5cm\)
+ Ban đầu ta có \(x_0=3cm\); \(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)
\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)
\(\Rightarrow \varphi \approx0,3\pi(rad)\)
Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)
Tại thời điểm t = 0 để ba dao động này thẳng hàng thì
→ dễ thấy rằng chỉ có A và B là phù hợp.
+ Tương tự như vậy, sau khoảng thời gian 0,25T, m1 đến biên, m2 trở vè vị trí cân bằng. Để ba vật thẳng hàng thì
Tại thời điểm t = 0 vật có li độ x3 = 3 cm sau đó 0,25T vật vẫn có li độ x3 = 3 cm → tại t = 0 vật chuyển động theo chiều dương → φ0 = 0,25π.
Đáp án A