K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

A = (-5).a + (-5).b

A = (-5). (a + b)

A = (-5). ....? 

Thêm dữ liệu ab.

10 tháng 12 2016

\(a.\)

\(x+5=-10\)

\(\Rightarrow x=-10-5=-15\)

 

10 tháng 12 2016

a ) x +5 = -10

x = -10 -5

x = - 15

b) x - ( - 10 ) = 5

x = 5+(-10)

x = -5

c) \(\left|x\right|\) -5 = 3

\(\left|x\right|=8\)

x ϵ { -8 ; 8 }

d) 15 - ( - x ) = 20

Không có số tự nhiên x nào mà 15 ( - x ) = 20

e ) \(\left|x-4\right|=3-\left(-7\right)\\ \left|x-4\right|=10\\ \left|x\right|=14\\ x\in\left\{\pm14\right\}\)

f ) \(\left|x+5\right|=10-\left(-20\right)\\ \left|x+5\right|=30\\ \left|x\right|=25\\ x\in\left\{\pm25\right\}\)

 

 

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

2 tháng 7 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}=>\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(=>a\left(b-6\right)+5\left(b-6\right)=a\left(b+6\right)-5\left(b+6\right)\)

\(=>ab-6a+5b-30=ab+6a-5b-30=>-6a+5b=6a-5b=>6a-\left(-6a\right)=5b-\left(-5b\right)\)

\(=>12a=10b=>\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\) (đpcm)

Câu 5

Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố

Suy ra 3p+7=2(L)

Khí đó p chẵn,mà p là số nguyên tố nên p=2

Vậy p=2

Câu 3

Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)

Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương

Suy ra a-b là số chính phương

Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)

Với a-b=1 mà 0<b<a nên ta có bảng sau:

a23456789
b12345678

Với a-b=4 mà a>b>0 nên ta có bảng sau:

a56789
b12345

Vậy ..............

23 tháng 3 2017

a, Ta có: \(3^{21}>3^{20}\left(1\right)\)

\(2^{31}>2^{30}\)(2)

\(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)

Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)

Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)

23 tháng 3 2017

a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)

\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)

\(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)

b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)

\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)

A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)

\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)

Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)

\(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)

\(\Rightarrow A>B\)

24 tháng 7 2018

Bạn đăng ít một thôi!

24 tháng 7 2018

mk lỡ đăng rồi bạn ạ 

30 tháng 10 2018

A) Số đó là số 10002

B) Số đó là số 10008

A) 10000

29 tháng 12 2019

01234