\(\dfrac{1+5+5^2+...+5^9}{1+5+5^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

a, Ta có: \(3^{21}>3^{20}\left(1\right)\)

\(2^{31}>2^{30}\)(2)

\(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)

Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)

Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)

23 tháng 3 2017

a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)

\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)

\(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)

b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)

\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)

A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)

\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)

Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)

\(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)

\(\Rightarrow A>B\)

23 tháng 2 2018

1.

Có : 5^299 < 5^300 = (5^2)^150 = 25^150

        3^501 > 3^450 = (3^3)^150 = 27^150

Mà 25^150 < 27^150 => 5^299 < 3^501

Tk mk nha

24 tháng 5 2017

2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

Giải:

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)

\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)

\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)

\(A< 1-\dfrac{1}{9}.\)

\(A< \dfrac{8}{9}_{\left(1\right)}.\)

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)

\(A>\dfrac{4}{10}.\)

\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\).

\(\Rightarrow A< \dfrac{8}{9}\)\(A>\dfrac{2}{5}.\)

\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

Vậy ta thu được \(đpcm.\)

~ Học tốt!!!... ~ ^ _ ^

23 tháng 5 2017

Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến

Câu 1 : Thực hiện phép tính 1 cách hợp lý : a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\) b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\) c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\) d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\) Câu 2 : a) 12 ( x - 5 ) = 7x - 5 b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x...
Đọc tiếp

Câu 1 : Thực hiện phép tính 1 cách hợp lý :

a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)

b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)

c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)

d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)

Câu 2 :

a) 12 ( x - 5 ) = 7x - 5

b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012

Câu 3 :

1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203

a) chứng tỏ rằng tổng S chia hết cho 52 .

b) Tìm Chữ số tận cùng trong tổng S .

2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .

Câu 4 : So sánh tổng gồm 1006 số hạng :

\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)

1
10 tháng 12 2022

Câu 2:

a: \(\Leftrightarrow12x-60=7x-5\)

=>5x=55

=>x=11

b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)

=>(2x-3)(2x-2)(2x-4)=0

hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

25 tháng 4 2018

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

=\(\dfrac{3}{2}.\dfrac{56}{305}\)

= \(\dfrac{78}{305}\)

25 tháng 4 2018

\(\left(x^2-4\right)\left(6-2x\right)=0\)\(x^2-4=0\) hoặc \(6-2x=0\)

*Nếu \(x^2-4=0\)

⇒ x2 = 4

⇒ x ∈ {2 ; -2}

*Nếu \(6-2x=0\)

⇒2x = 6

⇒ x = 6 : 2 = 3

Vậy x ∈ { -2 ; 2 ; 3 }

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

31 tháng 7 2017

1.Tính hợp lý:

a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65

30 tháng 7 2017

Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6

2 tháng 7 2017

a) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.(3^4)^2.\dfrac{1}{3^3}\)

\(=(3^2.\dfrac{1}{3^3}).\left(\dfrac{1}{3^5}.3^8\right)\)

\(=\dfrac{1}{3}.27\)

\(=9\)

b)\(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):\left(2^3.\dfrac{1}{2^4}\right)\)

\(=2^7:\dfrac{1}{2}\)

\(=2^8\)