Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
ta có:
AB2+AC2=62+82=100
BC2=102=100
áp dụng định lí Pytago đảo=>tam giác ABC vuông tại A
áp dụng định lí 1:
AH.BC=AB.AC
<=>AH=\(\dfrac{6.8}{10}=6,8\)
theo định lí 2
AC2=HC.BC
=>HC=82/10=6,4
xét tam giác HAC
HK.AC=AH.HC
HK=6,8.6,4/8=5,44
Áp dụng hệ thức lượng giác trong tam giác vuông ta có :
\(AH=\sqrt{\dfrac{AB^2AC^2}{AB^2+AC^2}}\)
\(\Leftrightarrow AH=\sqrt{\dfrac{3^2.4^2}{3^2+4^2}}=\dfrac{12}{5}\)
Mà :
\(AB.AC=AH.BC\)
\(\Leftrightarrow3.4=\dfrac{12}{5}.BC\) \(\)
\(\Rightarrow BC=5cm\)
Tiếp theo :
\(AC^2=HC.BC\)
\(\Leftrightarrow HC=AC^2:BC\)
\(\Leftrightarrow HC=9:5=\dfrac{9}{5}cm\)
Vậy \(\left\{{}\begin{matrix}AH=\dfrac{12}{5}cm\\BC=5cm\\HC=\dfrac{9}{5}cm\end{matrix}\right.\)
1) AB là đường kính \(\Rightarrow\angle ACB=90\) mà \(\angle IHB=90\Rightarrow BHIC\) nội tiếp
2) Xét \(\Delta AHI\) và \(\Delta ACB:\) Ta có: \(\left\{{}\begin{matrix}\angle AHI=\angle ACB=90\\\angle CABchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHI\sim\Delta ACB\left(g-g\right)\Rightarrow\dfrac{AI}{AH}=\dfrac{AB}{AC}\Rightarrow AI.AC=AB.AH\)
Tương tự \(\Rightarrow\Delta BIH\sim\Delta BAE\Rightarrow\dfrac{BI}{BH}=\dfrac{BA}{BE}\Rightarrow BI.BE=BA.BH\)
\(\Rightarrow AI.AC+BI.BE=AH.AB+BH.AB=AB\left(AH+BH\right)\)
\(=AB^2=4R^2\)
3) Xét \(\Delta CAB\): Ta có: \(\left\{{}\begin{matrix}\angle ACB=90\\AO=OB\\CO\bot AB\end{matrix}\right.\Rightarrow\Delta CAB\) vuông cân tại C
\(\Rightarrow\) C cố định
Ta có: \(\angle ECO+\angle EHO=90+\angle ECA+\angle ACO+\angle EHI\)
\(90+\angle EBA+\angle CAO+\angle IAE=90+\angle EAB+\angle EBA=180\)
\(\Rightarrow CEHO\) nội tiếp mà \(\angle HOC=90\Rightarrow\angle HEC=90\Rightarrow HE\bot EC\)
Vì \(CEHO\) nội tiếp \(\Rightarrow\) tâm của (CEH) là tâm của (CEHO)
\(\Rightarrow\) tâm của (CEH) thuộc trung trực CO mà C,O cố định
\(\Rightarrow\) đpcm
cho mình xin hình vẽ với