K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

Đầu tiên ta chứng minh \(\frac{1}{n.n}< \frac{1}{\left(n-1\right).\left(n+1\right)}\)(n thuộc N*)

Ta có: \(\frac{1}{\left(n-1\right).\left(n+1\right)}=\frac{1}{\left(n-1\right).n+\left(n-1\right)}=\frac{1}{n.n-n+n-1}=\frac{1}{n.n-1}>\frac{1}{n.n}\)

\(S=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2009^3}< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2008.2009.2010}\)

\(S< \frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2008.2009.2010}\right)\)

                                                                   \(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2008.2009}-\frac{1}{2009.2010}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2009.2010}\right)\)

\(S< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)

=> S < 1/4 (đpcm)

Ủng hộ mk nha ^_-

19 tháng 11 2023

cho mình hỏi tại sao: 

1/2 . (1/1.2−1/2009.2010) = 1/2 . 1/2

13 tháng 8 2015

Ta có:

 

S<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

S<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)

S<1-\(\frac{1}{200}=\frac{199}{200}<1\)

S<1

26 tháng 6 2018

B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009

Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008

2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009

2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )

A = 2^2009 - 1

S = 2^2009 - 1 / 1 - 2^2009

S = -1 

10 tháng 5 2016

\(\frac{1}{1+2+3+...+n}=\frac{1}{\frac{\left(1+n\right).n}{2}}=\frac{2}{\left(1+n\right).n}=2.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

áp dụng vào mà làm

10 tháng 5 2016

Ta có công thức: \(1+2+3+....+n=\frac{n.\left(n+1\right)}{2}\)

Áp dụng vào tình tổng S:

\(S=1+\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+.....+\frac{1}{\frac{n.\left(n+1\right)}{2}}\)

\(S=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.....+\frac{1}{\frac{n.\left(n+1\right)}{2}}\)

\(S=1+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{n\left(n+1\right)}\)

Đặt \(A=\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{n\left(n+1\right)}\) ,ta có:

\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)

\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2\left(n+1\right)}=\frac{n-1}{2n+2}\)

=>\(A=\frac{n-1}{2n+2}.2=\frac{2\left(n-1\right)}{2n+2}=\frac{2n-2}{2n+2}=\frac{2n+2-4}{2n+2}=1-\frac{4}{2n+2}<1\)

=>A < 1

Mà S=1+A

=>S < 2 (đpcm)