K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

giúp mình với

Nhanh mình tick cho

 

29 tháng 11 2015

S = \(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)

2.S = \(2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{1992}{2^{1990}}\)

=> 2.S - S = \(2+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}\)

=> S = \(2-\frac{1992}{2^{1991}}+\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\right)\)

Đặt A = \(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\)

=>2.A = 2 + \(\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{1989}}\)

=> 2.A - A = 2 - \(\frac{1}{2^{1990}}\)=A

Vậy S = \(4-\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}<4\)

 

 

30 tháng 11 2015

tic cho tuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

23 tháng 4 2018

sảqeh55R

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).

15 tháng 11 2015

chtt

tick cho mk nha bạn

9 tháng 12 2019

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)