Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}+\sqrt{3+\sqrt{5}}\right)}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{4+\sqrt{6+2\sqrt{5}}}+\dfrac{3\sqrt{2}-\sqrt{10}}{4-\sqrt{6-2\sqrt{5}}}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{5+\sqrt{5}}+\dfrac{3\sqrt{2}-\sqrt{10}}{5-\sqrt{5}}\)
\(=\dfrac{\left(3\sqrt{2}+\sqrt{10}\right)\left(5-\sqrt{5}\right)+\left(3\sqrt{2}-\sqrt{10}\right)\left(5+\sqrt{5}\right)}{20}\)
\(=\dfrac{15\sqrt{2}-3\sqrt{10}+5\sqrt{10}-5\sqrt{2}+15\sqrt{2}+3\sqrt{10}-5\sqrt{10}-5\sqrt{2}}{20}\)
\(=\dfrac{30\sqrt{2}-10\sqrt{2}}{20}=\dfrac{20\sqrt{2}}{20}=\sqrt{2}\)
\(\)
\(P=\dfrac{\left(\sqrt{a+1}+1\right)\left(\sqrt{a+1}+2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}+\dfrac{2\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}-\dfrac{2+5\sqrt{a+1}}{a-3}\)
\(P=\dfrac{a+3+3\sqrt{a+1}}{a-3}+\dfrac{2a+2-4\sqrt{a+1}}{a-3}-\dfrac{2+5\sqrt{a+1}}{a-3}\)
\(P=\dfrac{a+3+3\sqrt{a+1}+2a+2-4\sqrt{a+1}-2-5\sqrt{a+1}}{a-3}\)
\(P=\dfrac{3a+3-6\sqrt{a+1}}{a-3}\)
Có thể dừng ở đây hoặc nếu thích thì làm tiếp như sau (chưa chắc gọn hơn):
\(P=\dfrac{3\left(a+1\right)-6\sqrt{a+1}}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}=\dfrac{3\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}\)
\(P=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}-2}\)
Cho \(5\sqrt{x}7\) mk viet nham
Sua lai thanh \(5\sqrt{x}-7\)
a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)
=>10 căn x+5-5 chia hết cho 2 căn x+1
=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)
hay \(x\in\varnothing\)
a: \(P=\dfrac{\left(\sqrt{x^2+1}\right)^2+5\sqrt{x^2+1}+6}{\sqrt{x^2+1}+3}+\dfrac{\left(\sqrt{x^2+1}^2\right)+7\sqrt{x^2+1}+12}{\sqrt{x^2+1}+4}\)
\(=\sqrt{x^2+1}+2+\sqrt{x^2+1}+3\)
\(=2\sqrt{x^2+1}+5\)
b: Để P=11 thì \(2\sqrt{x^2+1}=11-5=6\)
=>căn (x^2+1)=3
=>x^2+1=9
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
=> \(M=\left(1-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}}=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-2\sqrt{x}}=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)
b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)
\(\Leftrightarrow x+2\sqrt{x}=0\)
hay x=0
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(ĐKXĐ:x\ge0,x\ne1\)
= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
= \(\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) (1)
b/ Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
Thay \(x=\left(\sqrt{3}-1\right)^2\) vào (1) ta được:
\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)= \(\dfrac{\sqrt{3}-1}{4-2\sqrt{3}+\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{4-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}-1\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}=\dfrac{3\sqrt{3}-1}{13}\)
Vậy giá trị của A khi \(x=4-2\sqrt{3}\) là \(\dfrac{3\sqrt{3}-1}{13}\)
\(p=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
học tốt nhé anh trai
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)
b/ Với \(x\ge0,x\ne1\)
Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)
\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-4\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=9+4\sqrt{5}\)
Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)
\(\sqrt{\dfrac{2}{5}}\) + \(\sqrt{\dfrac{5}{2}}\) = \(\dfrac{\sqrt{2}\times\sqrt{2}}{\sqrt{10}}\)+ \(\dfrac{\sqrt{5}\times\sqrt{5}}{\sqrt{10}}\) = \(\dfrac{7}{\sqrt{10}}\)= \(\dfrac{7\sqrt{10}}{10}\)
Lời giải:
\(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}=\frac{\sqrt{2}.\sqrt{2}+\sqrt{5}.\sqrt{5}}{\sqrt{5}.\sqrt{2}}=\frac{7}{\sqrt{10}}=\frac{7\sqrt{10}}{10}\)