\(\dfrac{4\sqrt{x}}{x-1}\)+\(\dfrac{1}{\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))

=> \(M=\left(1-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}}=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-2\sqrt{x}}=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

a: \(M=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b: Để M=9/2 thì \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}=\dfrac{9}{2}\)

=>\(2x+4\sqrt{x}+2-9\sqrt{x}=0\)

=>2x-5 căn x+2=0

=>(2 căn x-1)(căn x-2)=0

=>x=4 hoặc x=1/4

c: \(M-4=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>M>4

a: \(P=\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)

b: Để P=4/3 thì 4 căn x=3 căn x+6

=>x=36

28 tháng 4 2017

\(ĐKXĐ:x\ge0,x\ne1\)

= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

= \(\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

= \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) (1)

b/ Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

Thay \(x=\left(\sqrt{3}-1\right)^2\) vào (1) ta được:

\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)= \(\dfrac{\sqrt{3}-1}{4-2\sqrt{3}+\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{4-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}-1\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}=\dfrac{3\sqrt{3}-1}{13}\)

Vậy giá trị của A khi \(x=4-2\sqrt{3}\)\(\dfrac{3\sqrt{3}-1}{13}\)

28 tháng 4 2017

\(p=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

=\(\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

học tốt nhé anh trai

a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)

b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)

\(\Leftrightarrow x+2\sqrt{x}=0\)

hay x=0

12 tháng 5 2017

a/ ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b/ Với \(x\ge0,x\ne1\)

Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4\sqrt{x}-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=9+4\sqrt{5}\)

Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)

Câu a : \(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\dfrac{1}{\sqrt{x}}\times\dfrac{x+2\sqrt{x}+1}{\sqrt{x}-1}+1\)

\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+1\)

\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{2x+\sqrt{x}+1}{x-\sqrt{x}}\)

Câu b : Thay \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) vào A ta được :

\(A=\dfrac{2.\dfrac{4}{3}+\sqrt{\dfrac{4}{3}}+1}{\dfrac{4}{3}-\sqrt{\dfrac{4}{3}}}=\dfrac{\dfrac{8}{3}+\dfrac{2\sqrt{3}}{3}+\dfrac{3}{3}}{\dfrac{4}{3}-\dfrac{2\sqrt{3}}{3}}=\dfrac{\dfrac{11+2\sqrt{3}}{3}}{\dfrac{4-2\sqrt{3}}{3}}=\dfrac{11+2\sqrt{3}}{4-2\sqrt{3}}\)

Chúc bạn học tốt

4 tháng 8 2018

Bn ơi nếu như mk bấm máy tính thì nó ra là \(\dfrac{28+15\sqrt{3}}{2}\)

30 tháng 10 2019

a)ĐKXĐ:x>0

P=\(\left(\frac{3}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\left(vớix>0\right)\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

= \(\left[\frac{3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\frac{4-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{1}\)

=\(\frac{4-\sqrt{x}}{\sqrt{x}-1}\)

b)Để P=\(\frac{5}{4}\left(vớix>0\right)\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}=\frac{5}{4}\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}-\frac{5}{4}=0\)

\(\Leftrightarrow\frac{4\left(4-\sqrt{x}\right)}{4\left(\sqrt{x}-1\right)}-\frac{5\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-1\right)}=0\)

\(\Rightarrow16-4\sqrt{x}-5\sqrt{x}+5=0\)

\(\Leftrightarrow21-9\sqrt{x}=0\)

\(\Leftrightarrow-9\sqrt{x}=-21\)

\(\Leftrightarrow\sqrt{x}=\frac{7}{3}\)

\(\Leftrightarrow x=\frac{21}{9}\)

Vậy:Để P=\(\frac{5}{4}\)thì x=\(\frac{21}{9}\)

c)Còn phần c thì mik chịuhahahahahahahahahaha

22 tháng 10 2021

...