K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)

b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)

\(\Leftrightarrow x+2\sqrt{x}=0\)

hay x=0

12 tháng 5 2017

a/ ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b/ Với \(x\ge0,x\ne1\)

Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4\sqrt{x}-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=9+4\sqrt{5}\)

Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)

16 tháng 10 2018

Cho \(5\sqrt{x}7\) mk viet nham

Sua lai thanh \(5\sqrt{x}-7\)

19 tháng 10 2022

a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)

=>10 căn x+5-5 chia hết cho 2 căn x+1

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

hay \(x\in\varnothing\)

4 tháng 11 2018

ĐK:x>0,x\(\ne\)9

\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\div\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\dfrac{-3\left(\sqrt{x}+3\right).\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

Bài 2: 

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=14\\2x+y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\x-2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=7+2y=5\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là (x,y)=(5;-1)

13 tháng 10 2022

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)