Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1
=x^3 -8y^3 -2(x-2y)
=(x-2y)(x^2 +2xy +4y^2)- 2(x-2y)
=(x-2y)(x^2+2x +4y^2-2)
k day nhe
mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)
a) 2x - x3 + 4y - 8y3
= ( 2x + 4y ) - ( x3 + 8y3 )
= 2( x + 2y ) - ( x + 2y )( x2 - 2xy + 4y2 )
= ( x + 2y )( 2 - x2 + 2xy - 4y2 )
b) -3x2 + 11x + 14
= -3x2 - 3x + 14x + 14
= -3x( x + 1 ) + 14( x + 1 )
= ( x + 1 )( 14 - 3x )
a) 2x - x3 + 4y - 8y3
= (2x + 4y) - (x3 + 8y3)
= 2 (x + y) - [x3 + (2y)3]
= 2 (x + y) - (x + y)(x2 - 2xy + 4y2)
= (x + y)( 2 - x2 + 2xy - 4y2) (Thật sự là câu này mình vẫn chưa chắc chắn lắm =)))
b) -3x2 + 11x + 14
= -3x2 - 3x + 14x + 14
= (-3x2 - 3x) + (14x + 14)
= -3x(x + 1) + 14(x + 1)
= (-3x + 14)(x + 1)
=))
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
a)\(x^2+4x-4y^2-8y\)
\(=x^2+2xy+4x-2xy-4y^2-8y\)
\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)
\(=\left(x-2y\right)\left(x+2y+4\right)\)
b)sai đề
c)sai đề tiếp
a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)
=(x+2y(x-2y)+4(x-2y)
=(x-2y)(x+2y+4)
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
\(x^8y^8+x^4y^4+1\)
\(=\left(x^4y^4\right)^2+2x^4y^4+1-x^4y^4\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
\(=\left(x^4y^4-x^2y^2+1\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4-x^2y^2+1\right)\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\)
Chúc bạn học tốt.