Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)
x3 + 3x2y - 9xy2 + 5y3
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 6y3 - 12xy2 + 6 x2y )
= ( x - y )3 + 6y ( x - y )2
= ( x - y )2 ( x + 5y )
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
\(x^8y^8+x^4y^4+1\)
\(=\left(x^4y^4\right)^2+2x^4y^4+1-x^4y^4\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
\(=\left(x^4y^4-x^2y^2+1\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4-x^2y^2+1\right)\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\)
Chúc bạn học tốt.
x4-3x3-x+3 = (x4-3x3)-(x-3) = x3(x-3)-(x-3) = (x-3)(x3-1) = (x-3)(x-1)(x2+x+1)
3x+3y-x2-2xy-y2 = (3x+3y)-(x2+2xy+y2) = 3(x+y)-(x+y)2 = (x+y)( 3-x-y)
x2-x-12 = x(x-1)-12
a) \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
b) \(x^2-2xy-4+y^2\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
g) \(12xy-12xz+3x^2y-3x^2z\)
\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)
\(=3x\left(4+x\right)\left(y-z\right)\)
e) \(16x^2-9\left(x^2+2xy+y^2\right)\)
\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)
\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)
\(=\left(x+y\right)\left(7x+y\right)\)
d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy
a) 2x - x3 + 4y - 8y3
= ( 2x + 4y ) - ( x3 + 8y3 )
= 2( x + 2y ) - ( x + 2y )( x2 - 2xy + 4y2 )
= ( x + 2y )( 2 - x2 + 2xy - 4y2 )
b) -3x2 + 11x + 14
= -3x2 - 3x + 14x + 14
= -3x( x + 1 ) + 14( x + 1 )
= ( x + 1 )( 14 - 3x )
a) 2x - x3 + 4y - 8y3
= (2x + 4y) - (x3 + 8y3)
= 2 (x + y) - [x3 + (2y)3]
= 2 (x + y) - (x + y)(x2 - 2xy + 4y2)
= (x + y)( 2 - x2 + 2xy - 4y2) (Thật sự là câu này mình vẫn chưa chắc chắn lắm =)))
b) -3x2 + 11x + 14
= -3x2 - 3x + 14x + 14
= (-3x2 - 3x) + (14x + 14)
= -3x(x + 1) + 14(x + 1)
= (-3x + 14)(x + 1)
=))
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1