K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a2=bc =>ac-ab+bc-a2=ac-ab-bc+a2=>(a+b)(c-a)=(c+a)(a-b)=>\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

9 tháng 10 2015

lam on làm nhanh len ho tó nhe

 

16 tháng 10 2016

Ta có \(a^2\)=\(bc\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}\)=\(\frac{b}{a}\)=\(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

Vậy \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

19 tháng 7 2017

Khó hỉu

13 tháng 12 2021

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

5 tháng 7 2015

Ta có a/2 = b/3 = c/4

Áp dụng dãy tỉ số bằng nhau ta có:

a/2 = b/3 = c/4 = a^2 - b^2 + 2.c^2 / 2^2 - 3^2 + 2.4^2 = 108 / 27 = 4

=> a = 4.2 = 8

     b = 4.3 = 12

     c = 4.4 = 16

8 tháng 9 2015

\(\text{Vì }a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{a}{b}=\frac{c}{a}=\frac{c+a}{a+b}=\frac{c-a}{a-b}\)

\(\frac{c+a}{a+b}=\frac{c-a}{a-b}\Rightarrow\frac{c+a}{c-a}=\frac{a+b}{a-b}\)

\(\text{Vậy nếu }a^2=bc\text{ thì : }\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

18 tháng 2 2016

bạn lớp 7 mà học kém quá nhỉ

dễ ot

b,c=1

29 tháng 11 2015

a+b)*(c-a)=(c+a)*(a-b) 
nhân ra và rút gọn ta đc : 
2a^2=2bc 
<=> a^2=bc 

hoặc

áp dụng tính chất tỷ lệ thức: 
a^2=b*c <=>a/c = b/a =(a+b)/(c+a) = (a-b)/(c-a) 
từ hai tỷ số cuối:(a+b)/(c+a) = (a-b)/(c-a) =>(a+b)/(a-b)=(c+a)/(c-a)

30 tháng 6 2016

Bài 1 : Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath

Bài 2 :

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\) (tính chất tỉ lệ thức)