Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2\)=\(bc\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}\)=\(\frac{b}{a}\)=\(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)
Từ \(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)
Vậy \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)
vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)
đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2) thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)
do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\text{Vì }a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{a}{b}=\frac{c}{a}=\frac{c+a}{a+b}=\frac{c-a}{a-b}\)
\(\frac{c+a}{a+b}=\frac{c-a}{a-b}\Rightarrow\frac{c+a}{c-a}=\frac{a+b}{a-b}\)
\(\text{Vậy nếu }a^2=bc\text{ thì : }\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(a^2=bc\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Do \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow\begin{cases}a=b.k\\c=a.k\end{cases}\)
Ta có:
\(\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+a}{c-a}=\frac{a.k+a}{a.k-a}=\frac{a.\left(k+1\right)}{a.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
ta có :a^2=bc
⇒a.a=bc
⇒a/b=c/a
⇒a/c=b/a
Áp dụng tính chất dãy tỉ số bằng nhau a/c=b/a=a+b/c+a=a-b/c-a
⇒a+b/c+a=a-b/c-a
⇒a+b/a-b=c+a/c-a(điều phải chứng minh)
ta có (a+b)*(c-a)= ac+bc-a2-ab(1)
(a-b)*(c+a)= ac-bc+a2-ab(2)
bỏ ac và -ab ở (1)(2) có
(1)= bc - a2 =0
(2)= a2 - bc = 0
=> Đpcm
Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
Ta có a/2 = b/3 = c/4
Áp dụng dãy tỉ số bằng nhau ta có:
a/2 = b/3 = c/4 = a^2 - b^2 + 2.c^2 / 2^2 - 3^2 + 2.4^2 = 108 / 27 = 4
=> a = 4.2 = 8
b = 4.3 = 12
c = 4.4 = 16
lam on làm nhanh len ho tó nhe