K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

a+b)*(c-a)=(c+a)*(a-b) 
nhân ra và rút gọn ta đc : 
2a^2=2bc 
<=> a^2=bc 

hoặc

áp dụng tính chất tỷ lệ thức: 
a^2=b*c <=>a/c = b/a =(a+b)/(c+a) = (a-b)/(c-a) 
từ hai tỷ số cuối:(a+b)/(c+a) = (a-b)/(c-a) =>(a+b)/(a-b)=(c+a)/(c-a)

30 tháng 6 2016

Bài 1 : Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath

Bài 2 :

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\) (tính chất tỉ lệ thức)

 

 

10 tháng 8 2016

a2=bc =>ac-ab+bc-a2=ac-ab-bc+a2=>(a+b)(c-a)=(c+a)(a-b)=>\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

8 tháng 9 2015

\(\text{Vì }a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{a}{b}=\frac{c}{a}=\frac{c+a}{a+b}=\frac{c-a}{a-b}\)

\(\frac{c+a}{a+b}=\frac{c-a}{a-b}\Rightarrow\frac{c+a}{c-a}=\frac{a+b}{a-b}\)

\(\text{Vậy nếu }a^2=bc\text{ thì : }\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

9 tháng 10 2015

lam on làm nhanh len ho tó nhe

 

29 tháng 6 2017

Từ \(a^2+b^2+c^2=ab+bc+ac\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Rightarrow a=b=c}\)

Vậy nếu \(a^2+b^2+c^2=ab+bc+ac\)thì \(a=b=c\)

6 tháng 1 2019

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2bc+2ca\right)=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)    (1)

Vì \(\left(a-b\right)^2\ge0;\left(b-a\right)^2\ge0;\left(c-a\right)^2\ge0\)

Nên (1) \(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)     \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Bình phương 2 vế ta được

2a2+2b2+2c2=2ab+2bc+2ac

Lấy VT trừ VP ta được

(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c=0

22 tháng 10 2019

Đề bài là cm à?

Ta có:

2bd=c(b+d)

=>(a+c)d=c(b+d)

=>ad+cd=cb+cd

=>ad+cd-cd=bc

=>ad=bc

=>a/b=c/d(đpcm)

22 tháng 10 2019

a) Ta có \(\hept{\begin{cases}a+c=2b\left(1\right)\\2bd=c\left(b+d\right)\left(2\right)\end{cases}}\) 

Thay (1) vào (2) ta có : \(\left(a+c\right).d=c\left(b+d\right)\)

\(\Rightarrow ad+cd=bc+cd\)

\(\Rightarrow ad=bc\)               

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)

b) Ta có : a2 = bc

=> \(\frac{a}{b}=\frac{a}{c}\)

Đặt \(\frac{a}{b}=\frac{a}{c}=k\)

=> a = bk = ck

Khi đó : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+a}{a-c}=\frac{c+ck}{ck-c}=\frac{c\left(1+k\right)}{c\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+a}{a-c}\left(\text{đpcm}\right)\)