K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

Chọn C

Lò xo dao động điều hòa trên đoạn dài   L 0 10 = 10cm => A = 5cm.

+ Lực kéo về có độ lớn cực tiểu khi x1 = 0, đang đi theo chiều dương và a1 = 0.

+ Khi vật có Wđ = 3Wt thì 

 

tính từ t = 0, tại lần thứ 3 có Wđ = 3Wt thì 

=> Chiều dài là l = 100 - 1,25 = 98,75(cm)

26 tháng 10 2016

mk nghĩ làm bài này như sau:

Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)

\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)

Chọn C

26 tháng 10 2016

thank bạn nha

 

6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

16 tháng 7 2016

+ CLLX treo thẳng đứng, khi ở VTCB thì: \(\Delta\ell_0=\dfrac{mg}{k}\) (1)

+ CLLX trên mặt phẳng nghiêng:

P N F α

Vật nằm cân bằng thì: \(\vec{P}+\vec{F}+\vec{N}=\vec{0}\)

Chiếu lên trục tọa độ ta có: \(P.\sin\alpha-F=0\)

\(\Rightarrow mg\sin\alpha=k.\Delta\ell_2\)

\(\Rightarrow \Delta\ell_2=\dfrac{mg\sin\alpha}{k}\) (2)

Từ (1) và (2) ta có: \(\sin\alpha=\dfrac{\Delta \ell_2}{\Delta\ell_1}=\dfrac{3}{5}\)

\(\Rightarrow \alpha =36,9^0\)

10 tháng 5 2017

Khi qua VTCB, tốc độ của con lắc đạt cực đại là:

\(v_{max}=\omega A =\sqrt{\dfrac{k}{m}}.A\)

\(\Rightarrow m = \dfrac{kA^2}{v_{max}^2}=\dfrac{a}{v_{max}^2}\) (vì \(kA^2=const\))

Theo đề bài ta có: \(m_3=9m_1+4m_2\)

\(\Rightarrow \dfrac{a}{v_3^2}=\dfrac{9a}{v_1^2}+\dfrac{4a}{v_2^2}\)

\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{v_1^2}+\dfrac{4}{v_2^2}\)

\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{20^2}+\dfrac{4}{10^2}\)

\(\Rightarrow v_3=4m/s\)

Chọn đáp án B.

21 tháng 7 2016

Bài này có vẻ lẻ quá bạn.

\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)

Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)

\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)

\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)

M N O α α

Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.

\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)

Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)

21 tháng 7 2016

bạn ơi cho mình hỏi thời gian nhỏ nhất hay lớn nhất thì cách tính vẫn vậy hả?