Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\) và \(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng
\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:
\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)
\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).
Thay số ta tìm được: \(\alpha_2 = 5,625^0\)
Cứ 100s thì năng lượng của con lắc giảm đúng bằng cơ năng ban đầu:
\(T_1=\frac{\Delta t}{40}.\)
\(T_2=\frac{\Delta t}{39}.\)
=> \(\frac{T_1}{T_2}=\frac{40}{39}=\sqrt{\frac{l_1}{l_2}}\).
Khi cho quả cầu tích điện và đặt điện trường vào thì gia tốc biểu kiến của con lắc lúc này là \(\overrightarrow{g_{bk}}=\overrightarrow{g}+\frac{\overrightarrow{F_đ}}{m}=\overrightarrow{g}+\frac{\overrightarrow{E}q}{m}\)
Do để chu kì không đổi khi tăng chiều dài thì g cũng phải tăng như vậy \(g_{bk}=g+\frac{E}{m}=g+\frac{Eq}{m}\)
Để \(T_1=T_2\)
=>\(2\pi\sqrt{\frac{l_2}{g_{bk}}}=2\pi\sqrt{\frac{l_1}{g}}\)
=> \(\frac{l_2}{l_1}=\frac{g+\frac{Eq}{m}}{g}=\frac{40^2}{39^2}.\)
=> \(E=2,08.10^4V.\)