Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+4x^3+5x^2-4x+4=0\)
\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)
\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)
Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)
Mà ko cùng một lúc tồn tại 2 giá trị của x
\(\Rightarrow\)Phương trình vô nghiệm
Vậy ...
3x2 + 2x - 1 = 0
=> 3x2 + 3x - x - 1 = 0
=> 3x(x + 1) - (x + 1) = 0
=> (3x - 1)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
x2 - 5x + 6 = 0
=> x2 - 2x - 3x + 6 = 0
=> x(x - 2) - 3(x - 2) = 0
=> (x - 3)(x - 2) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=> \(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
1, \(3x^2+2x-1=0\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
2, \(x^2-5x+6=0\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
3, \(3x^2+7x+2=0\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}}\)
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
3\(x^2\) - 4\(x\) - 4 = 0
3(\(x^2\) - 2. \(\dfrac{2}{3}\)\(x\) + \(\dfrac{4}{9}\)) - \(\dfrac{16}{3}\) = 0
3.(\(x-\dfrac{2}{3}\))2 = \(\dfrac{16}{3}\)
(\(x-\dfrac{2}{3}\))2 = \(\dfrac{16}{9}\)
\(\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{4}{3}\\x-\dfrac{2}{3}=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{4}{3}+\dfrac{2}{3}\\x=-\dfrac{4}{3}+\dfrac{2}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
S = { -\(\dfrac{2}{3}\); 2}
3x² - 4x - 4 = 0
⇔ 3x² - 6x + 2x - 4 = 0
⇔ (3x² - 6x) + (2x - 4) = 0
⇔ 3x(x - 2) + 2(x - 2) = 0
⇔ (x - 2)(3x + 2) = 0
⇔ x - 2 = 0 hoặc 3x + 2 = 0
*) x - 2 = 0
⇔ x = 2
*) 3x + 2 = 0
⇔ 3x = -2
⇔ x = -2/3
Vậy S = {-2/3; 2}
3x2 - 4x - 4 = 0
<=> 3x2 - 6x + 2x - 4 = 0
<=> 3x(x - 2) + 2(x - 2) = 0
<=> (3x + 2)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=2\end{cases}}\)
Vậy \(x\in\left\{-\frac{2}{3};2\right\}\)là nghiệm phương trình
3x2 - 4x - 4 = 0
<=> 3x2 - 6x + 2x - 4 = 0
<=> 3x( x - 2 ) + 2( x - 2 ) = 0
<=> ( x - 2 )( 3x + 2 ) = 0
<=> x - 2 = 0 hoặc 3x + 2 = 0
<=> x = 2 hoặc x = -2/3
Vậy tập nghiệm của phương trình là S = { 2 ; -2/3 }