K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C D O

Ta có: \(AB//CD\left(Gt\right)\)

Áp dụng định lí ta - let trong hình thang \(ABCD\)ta có:

\(\Rightarrow\frac{OA}{OC}=\frac{OB}{OD}\Rightarrow OA.OD=OB.OC\left(đpcm\right)\)

29 tháng 3 2019

Ta có: AB // CD (gt), áp dụng hệ quả của định lý Ta – lét ta có:

Suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(hệ quả định lí ta-lét)

Vậy OA.OD = OB.OC

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

13 tháng 9 2023

Xét tam giác \(OCD\) có \(AB//CD\) (giả thiết) và \(AB\) cắt \(OC;OD\) lần lượt tại \(A;B\).

Theo hệ quả của định lí Thales ta có:

\(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} = \frac{{AB}}{{CD}} \Rightarrow \frac{{OA}}{{OC}} = \frac{{OB}}{{OD}} \Rightarrow OA.OD = OB.OC\)  (điều phải chứng minh).

25 tháng 4 2020

A B C D O H K 1 1 1 1

a) Xét hình thang ABCD có AB//CD => \(\widehat{A_1}=\widehat{C_1}\)và \(\widehat{B_1}=\widehat{D_1}\)

\(\Rightarrow\Delta AOB~\Delta COD\left(g.g\right)\)

=> \(\frac{OA}{OC}=\frac{OB}{OD}\Rightarrow OA\cdot OD=OB\cdot OC\)

b) Chứng minh \(\Delta AHO~\Delta CKO\left(g.g\right)\)

\(\frac{OH}{OK}=\frac{AH}{CK}\left(1\right)\)tương tự ta có:

\(\Delta BHO~\Delta DKO\left(g.g\right)\Rightarrow\frac{OH}{OK}=\frac{BH}{DK}\left(2\right)\)

Từ (1) (2) => \(\frac{OH}{OK}=\frac{AH}{CK}=\frac{BH}{DK}=\frac{AH+BH}{CK+DK}=\frac{AB}{CD}\)

vậy \(\frac{OH}{OK}=\frac{AB}{CD}\Rightarrow OH\cdot CD=OK\cdot AB\)

30 tháng 9 2024

ABCD là hình thang suy ra ABAB // CDCD.

Áp dụng hệ quả định lí Thalès, ta có: OAOC =OBODOCOA =ODOB

Suy ra OA.OD=OB.OCOA.OD=OB.OC (đpcm).

10 tháng 10 2017

Vì AB//CD, áp dụng định lý Ta-lét, ta có: O A O C   =   O B O D  

Từ đó suy ra ĐPCM