Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab^3c^2-a^2b^2c^2+ab^2c^3-a^2bc^3\)
\(=abc^2\left(b^2-ab+abc-ac\right)\)
\(\left(a^2+b^2+c^2\right)^2-a^2b^2-b^2c^2-a^2c^2\)
\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3-a^2b^2-b^2c^2-c^2a^2\)
\(=\left(a^4+2a^2b^2+b^4\right)+\left(2a^3b+2ab^3\right)-\left(a^2c^2+b^2c^2\right)\)
\(=\left(a^2+b^2\right)^2+2ab.\left(a^2+b^2\right)-c^2.\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right).\left(a^2+b^2+2ab-c^2\right)\)
\(=\left(a^2+b^2\right).\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a^2+b^2\right).\left(a+b-c\right).\left(a+b+c\right)\)
\(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc\\ =\left(a^2b+a^2c+ac^2+abc\right)+\left(ab^2+b^2c+bc^2+abc\right)\\ =a\left(ab+ac+c^2+bc\right)+b\left(ab+bc+c^2+ac\right)\\ =\left(a+b\right)\left[\left(ab+ac\right)+\left(bc+c^2\right)\right]\\ =\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\\ =\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
=2ab.[a+2b]+c^2.[a+2b]- c.[a^2+4ab+4.b^2]
=.................................-c[a+2b]^2
=[a+2b].{2ab+c^2-ca-2bc]
=[a+2b]{ 2b.[a-c]-c.[a-c] }
=[a+2b].[a-c].[2b-c]
2a2b2+2b2c2+2a2c2-a4-b4-c4
=4a2c2-(a4+b4+c4-2a2b2+2a2c2-2b2c2)
=4a2c2-(a2-b2+c2)2
=(2ac+a2-b2+c2)(2ac-a2+b2-c2)
=[(a+c)2-b2][b2-(a-c)2]
=(a+b+c)(a+c-b)(b+a-c)(b-a+c)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)