Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`3x + 6xy + 3y - 3z`
`= 3(x + 2y + y - z)`
`b,`
`x+ xy - xz - xyz`
`= x(1 + y)*(1-z)`
a: 3x^2+6xy+3y^2-3z^2
=3(x^2+2xy+y^2-z^2)
=3[(x+y)^2-z^2]
=3(x+y+z)(x+y-z)
b: x+xy-xz-xyz
=x(y+1)-xz(y+1)
=(y+1)*x*(1-z)
a: =2(x-2)+y(x-2)
=(x-2)(2+y)
b: \(=\left(x+y\right)^2-4=\left(x+y+2\right)\left(x+y-2\right)\)
c: =(x-7)(x+2)
a.
2x - 4 + xy - 2y
= 2(x-2) +y(x-2)
= (x-2)(y+2)
c.
x^2 - 5x - 14
= x^2 + 2x - 7x - 14
= x(x+2) - 7(x+2)
= (x-7)(x+2)
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
x2 - axy - bxy + aby2
= ( x2 - axy) - ( bxy - aby2)
= x( x-ay) - by( x - ay)
= ( x-ay)( x - by)
a: =x(4x^2+4x+1)
=x(2x+1)^2
b: =(x-y)^2-49
=(x-y-7)(x-y+7)
a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)
c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)
b) Ta có: \(x^3-x^2y-xy^2+y^3\)
\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)^2\)
a/ x^3z+xyz-x^3-xyz^2
=x3z-xyz2-x3+xyz
=xz.(x2-xyz)-x(x2-xyz)
=(x2-xyz)(xz-x)
=x(x-yz)x(z-1)
=x2(x-yz)(z-1)
b/ x^2-axy-bxy+aby^2
=x(x-ay)-by(x-ay)
=(x-ay)(x-by)
c/ abx^2+a^2xy+aby^2+b^2xy
=ax(bx+ay)+by(ay+bx)
=(ay+bx)(ax+by)