Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$70a-84b-20ab-24b^2=2(35a-42b-10ab-12b^2)$
b)
$12y-9x^2+36-3x^2y$
$=(12y-3x^2y)+(36-9x^2)$
$=3y(4-x^2)+9(4-x^2)$
$=(3y+9)(4-x^2)=3(y+3)(2-x)(2+x)$
c)
$21bc^2-6c-3c^2+42b=3(7bc^2-2c-c^2+14b)$
d)
$30a^3-18a^2b-72b+120a$
$=(30a^3+120a)-(18a^2b+72b)$
$=30a(a^2+4)-18b(a^2+4)$
$=(a^2+4)(30a-18b)=6(a^2+4)(5a-3b)$
P/s: Cảm giác câu a,c bạn viết sai đề.
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
1, \(a.\left(b+c\right)+3b+3c=a.\left(b+c\right)+3.\left(b+c\right)\)= \(\left(b+c\right).\left(3+a\right)\)
2, \(a.\left(m-n\right)+\left(m-n\right)=\left(m-n\right).\left(a+1\right)\)
3, \(7a^2-7ax-9a+9x=7a.\left(a-x\right)-9.\left(a-x\right)\)= \(\left(a-x\right).\left(7a-9\right)\)
4, \(4x+by+4y+bx=4.\left(x+y\right)+b.\left(x+y\right)\)= \(\left(x+y\right).\left(4+b\right)\)
5, \(ay-ax-2x+2y=a.\left(y-x\right)+2.\left(y-x\right)\)= \(\left(y-x\right).\left(a+2\right)\)
Chúc bạn học tốt. Có gì không hiểu thì chat hỏi mik nhé. ^^
\(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)
Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)
<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)
+TH1:\(\left(a+b+c\right)=0\)
=>\(a+b=-c\)
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc
=>\(a^3+b^3+c^3=3abc\)
+TH2:x+y=1
<=>y=1-x
=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
=>a=b=c
\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)
Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)
Ta có : (1)=(2)=x suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=>a=b=c(đưa về trường hợp như trên)
\(a,21bc^2-6c-3c^3+42b\)
\(=21bc^2-3c^3+42b-6c\)
\(=3c^2\left(7b-3c\right)+6\left(7b-3c\right)=3\left(c^2+2\right)\left(7b-3c\right)\)\(c,ax-bx-cx+ay-by-cy\)
\(=x\left(a-b-c\right)+y\left(a-b-c\right)=\left(x+y\right)\left(a-b-c\right)\)Còn phần b hình như sai đề