K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\)

\(=17x^2-2x+10\)

\(\left(x-y+1\right)^3=x^3-y^3+1-3x^2y+3xy^2+3x^2+3x+3y^2-3y-6xy\)

17 tháng 7 2019

\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\) \(=17x^2-2x+10\)

\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)

26 tháng 6 2017

E= (7802-2202)/ (1252+150.125+752)

E= (7802-2202)/(125+75)2

E= (780-220)2/2002= 5602/2002=...........

26 tháng 6 2017

A= a3+11+3a+3a2 với a=9

A= a(a2+a3+3) +11

tại a=9 ta có A= 9(92+9.3+3) +11

= 9. 111 +11

= 999+11 = 1010

11 tháng 11 2019

2

a

\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)

Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)

3

\(3a^2+4b^2=7ab\)

\(\Leftrightarrow3a^2-7ab+4b^2=0\)

\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)

\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)

Làm nốt

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

1: =(4x-1)^2-3(4x-1)

=(4x-1)(4x-1-3)

=4(x-1)(4x-1)

2: =-8x^4y^5(2y+3x)

3: =(a-5)^2-4b^2

=(a-5-2b)(a-5+2b)

5: =x^2-mx-nx+mn

=x(x-m)-n(x-m)

=(x-m)(x-n)

6: =(4a^2-3a-18-4a^2-3a)(4a^2-3a-18+4a^2+3a)

=(-6a-18)(8a^2-18)

=-6(2a-3)(2x+3)(a+3)

26 tháng 4 2020

\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)

\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)

=> x + 2 - 16x - 2 = 6 - 15x - 36

<=> x - 16x + 15x = 6 -36 + 2 - 2

<=> 0x = -30

Phương trình vô ngiệm

b, 11 - ( x + 2) = 3(x + 1)

<=> 11 - x - 2= 3x + 3

<=> -x - 3x = 3 - 11 + 2

<=> -4x = -6

<=> x = \(\frac{3}{2}\) 

C,  tương tự a

26 tháng 4 2020

c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1

Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)

=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)

<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x

<=> 2x2 + 6x + 2 - 2x2 - 2x = 0

<=> 4x + 2 = 0

<=> 4x = -2

<=> x = -1/2 (tm)

Vậy S = {-1/2}

17 tháng 7 2019

\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)

\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2+3x-3y+1\)

Mong là lần này không làm nhầm:v

17 tháng 7 2019

thì bạn chỉ cần khai triển hằng đẳng thức là được thôi,nếu không biết thì cứ gõ lên mạng