K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)

\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)

=> x + 2 - 16x - 2 = 6 - 15x - 36

<=> x - 16x + 15x = 6 -36 + 2 - 2

<=> 0x = -30

Phương trình vô ngiệm

b, 11 - ( x + 2) = 3(x + 1)

<=> 11 - x - 2= 3x + 3

<=> -x - 3x = 3 - 11 + 2

<=> -4x = -6

<=> x = \(\frac{3}{2}\) 

C,  tương tự a

26 tháng 4 2020

c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1

Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)

=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)

<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x

<=> 2x2 + 6x + 2 - 2x2 - 2x = 0

<=> 4x + 2 = 0

<=> 4x = -2

<=> x = -1/2 (tm)

Vậy S = {-1/2}

14 tháng 12 2019

a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)

c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)

d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)

20 tháng 2 2020

\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)

\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)

\(\Leftrightarrow2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\sqrt{3}\)

\(b.2x^3-5x^2+3x=0\)

\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)

\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)

Đến đây tự làm nhé có việc bận

20 tháng 2 2020

câu a sai dzoii

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

17 tháng 1 2021

1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)

Thay x = 14 ; y = -15 vào biểu thức ta được 

\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)