Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)
\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2+3x-3y+1\)
Mong là lần này không làm nhầm:v
thì bạn chỉ cần khai triển hằng đẳng thức là được thôi,nếu không biết thì cứ gõ lên mạng
1/ \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2\left(1-3\right)=0\)
\(\left(2x-1\right)^2\cdot\left(-2\right)=0\)
\(\Rightarrow\text{ }\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(2x=0+1=1\)
\(x=\frac{1}{2}\)
1) \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
=> \(\left(2x-1\right)^2\left(1-3\right)=0\)
=> \(\left(2x-1\right)^2.\left(-2\right)=0\)
=> \(\left(2x-1\right)^2=0\)
=> \(2x-1=0\)
=> \(2x=1\)
=> \(x=1:2=\frac{1}{2}\)
Bài Làm:
\(1,\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
\(\Leftrightarrow-2\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy ...
\(2,\left(x-1\right)^2\left(x+1\right)=x+1\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2-2x+1-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
Vậy ...
\(3,x^4-3x^2=x^2\)
\(\Leftrightarrow x^4-3x^2-x^2=0\)
\(\Leftrightarrow x^4-4x^2=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc pạn hok tốt!!!
x(y - z) + 2(z - y)
= x(y - z) - 2(y - z)
= (x - 2)(y - z)
(2x - 3y)(x - 2) - (x + 3)(3y - 2x)
= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)
= (2x - 3y)(x - 2 + x + 2)
= 2x(2x - 3y)
\(1.\)
\(4x^2-12x+9\)
\(=\left(2x\right)^2-12x+3^2=\left(2x-3\right)^2\)
\(2.\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(\left(7x-5\right)\left(x-y\right)\)
\(3.\)
\(x^3-9x\)
\(=x\left(x^2-9\right)\)
\(=x\left(x-3\right)\left(x+3\right)\)
\(4.\)
\(5x\left(x-y\right)-15\left(x-y\right)\)
\(=\left(5x-15\right)\left(x-y\right)\)
\(=5\left(x-3\right)\left(x-y\right)\)
\(5.\)
\(2x^2+x\)
\(=2x\left(x+1\right)\)
\(6.\)
\(x^3+27\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(7.\)
\(2x^2-4xy+2y^2-32\)
\(=2\left(x^2-2xy+y^2-16\right)\)
\(=2\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=2\left[\left(x-y\right)^2-4^2\right]\)
\(=2\left(x-y+4\right)\left(x-y-4\right)\)
\(8.\)
\(x^3-4x-3x^2+12\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(9.\)
\(2x+2y+x^2-y^2\)
\(=2\left(x+y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+2\right)\)
\(10.\)
\(x^2y-2xy+y\)
\(=y\left(x^2-2x+1\right)\)
\(=y\left(x-1\right)^2\)
\(11.\)
\(y^2+2y\)
\(=y\left(y+2\right)\)
\(12.\)
\(y^2-x^2-6y-6x\)
\(=\left(y-x\right)\left(y+x\right)-6\left(y+x\right)\)
\(=\left(y+x\right)\left(y-x-6\right)\)
\(13.\)
\(x^3-3x\)
\(=x\left(x^2-3\right)\)
\(=x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(14.\)
\(2x-xy+2z-yz\)
\(=x\left(2-y\right)+z\left(2-y\right)\)
\(=\left(2-y\right)\left(x+z\right)\)
Xong
1)
ĐK: \(x,y\neq 0\); \(x+y\neq 0\)
\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)
\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)
2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)
\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)
\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)
3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)
\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)
4) ĐK: \(x\neq \frac{\pm 1}{3}\)
\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)
\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)
\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)
5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)
\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)
\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{3}{(x+1)^2}\)
\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\)
\(=17x^2-2x+10\)
\(\left(x-y+1\right)^3=x^3-y^3+1-3x^2y+3xy^2+3x^2+3x+3y^2-3y-6xy\)
\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\) \(=17x^2-2x+10\)
\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)