Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5\right)=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+5=5\\x^2+5x+5=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2=-\frac{15}{4}\left(VL\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) ( TM )
ĐKXĐ:...
\(x^2+\frac{36}{x^2}-4\left(x-\frac{6}{x}\right)-17=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow a^2=x^2+\frac{36}{x^2}-12\Rightarrow x^2+\frac{36}{x^2}=a^2+12\)
\(a^2+12-4a-17=0\)
\(\Leftrightarrow a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=-1\\x-\frac{6}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2-5x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+5=0\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+5=0\)
Đặt \(x^2+8x+7=a\)
\(a\left(a+8\right)+5=0\Leftrightarrow a^2+8a+5=0\)
Nghiệm xấu, bạn có nhầm số 5 kia ko?
cái thứ nhất bạn dùng phương pháp đổi biến,đặt x^2+3x+2=a rùi thay vào và ptdt thành nhân tử thui
còn cái thứ 2 bạn nhân x+1 với x+4;x+2 với x+3 rùi lại dùng phương pháp đổi biến la ra thui
Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)
Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)
=> Phương trình vô nghiệm
Đặt \(x^2-4x+5=a\)
\(\frac{5}{a}-a+4=0\)
\(\Leftrightarrow-a^2+4a+5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x+5=-1\\x^2-4x+5=5\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)
Phương trình trở thành:
\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)
\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)
\(\Leftrightarrow\left(x^2-x-20\right)\left(x^2-x-6\right)+24=0\)
\(\Leftrightarrow\left(x^2-x-13-7\right)\left(x^2-x-13+7\right)+24=0\)
\(\Leftrightarrow\left(x^2-x-13\right)^2-7^2+24=0\)
\(\Leftrightarrow\left(x^2-x-13\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-13=5\\x^2-x-13=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-x-18=0\\x^2-x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=18+\frac{1}{4}\\x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=8+\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{1}{2}\right)^2=\frac{73}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{33}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{73}}{2}\\x=\frac{1-\sqrt{73}}{2}\\x=\frac{1+\sqrt{33}}{2}\\x=\frac{1-\sqrt{33}}{2}\end{matrix}\right.\) ( TM )