K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Đặt \(x^3=a\)

Pt đã cho trở thành \(a^2+61a-8000=0\)     

                           \(\Leftrightarrow\left(a-64\right)\left(a+125\right)=0\)

                            \(\Leftrightarrow\orbr{\begin{cases}a=64\\a=125\end{cases}}\)

                           \(\Leftrightarrow\orbr{\begin{cases}x^3=64\\x^3=-125\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)

4 tháng 12 2018

x6+61x3-8000=0

=>x6+2.30,5x3+30,52-8930,25=0

=>(x3+30,5)2=8930,25

=>x3+30,5=94,5

=>x3=64

=>x=4

2 tháng 3 2020

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

25 tháng 4 2018

ĐK...

đặt \(\sqrt{x^2-x-6}=a\left(a\ge0\right)\)

Ta có pt <=> \(a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow a-3=0\left(vi:a+3>0\right)\)

đến đây tự làm nhá 

8n

14 tháng 10 2018

\(\sqrt{x+6}+\sqrt{x-3}-\sqrt{x+1}-\sqrt{x-2}=0\)(ĐKXĐ: \(x\ge3\))

\(\Leftrightarrow\sqrt{x+6}+\sqrt{x-3}=\sqrt{x+1}+\sqrt{x-2}\)

\(\Leftrightarrow2x+3+2\sqrt{\left(x-3\right)\left(x+6\right)}=2x-1+2\sqrt{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow2+\sqrt{\left(x-3\right)\left(x+6\right)}=\sqrt{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(2+\sqrt{\left(x-3\right)\left(x+6\right)}\right)^2=x^2-x-2\)

\(\Leftrightarrow x^2+3x-14+4\sqrt{\left(x-3\right)\left(x+6\right)}=x^2-x-2\)

\(\Leftrightarrow4x-12+4\sqrt{\left(x-3\right)\left(x+6\right)}=0\)

\(\Leftrightarrow\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+6\right)}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x-3}+\sqrt{x+6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x-3}+\sqrt{x+6}=0\end{cases}}\)

+) Nếu \(\sqrt{x-3}=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

+) Nếu \(\sqrt{x-3}+\sqrt{x+6}=0\). Ta thấy: \(\hept{\begin{cases}\sqrt{x-3}\ge0\\\sqrt{x+6}\ge0\end{cases}}\forall x\in R\)

Do đó: \(\hept{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+6}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-6\end{cases}}\)\(\Rightarrow x=3\)(loại \(x=-6\) vì không t/m ĐKXĐ)

Vậy pt có một nghiệm duy nhất là x= 3.

7 tháng 7 2015

\(x^3-2x-4=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left[\left(x+1\right)^2+1\right]=0\)\(\Leftrightarrow x=2\text{ (do }\left(x+1\right)^2+1>0\text{ )}\)

\(x^3-7x-6=x^3-3x^2+3x^2-9x+2x-6=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+2\right)\right]=\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=3\text{ hoặc }x=-1\text{ hoặc }x=-2\)

 

7 tháng 7 2015

a.   x=2

b.  x=3; x=-1; x=-2