Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+6}+\sqrt{x-3}-\sqrt{x+1}-\sqrt{x-2}=0\)(ĐKXĐ: \(x\ge3\))
\(\Leftrightarrow\sqrt{x+6}+\sqrt{x-3}=\sqrt{x+1}+\sqrt{x-2}\)
\(\Leftrightarrow2x+3+2\sqrt{\left(x-3\right)\left(x+6\right)}=2x-1+2\sqrt{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2+\sqrt{\left(x-3\right)\left(x+6\right)}=\sqrt{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(2+\sqrt{\left(x-3\right)\left(x+6\right)}\right)^2=x^2-x-2\)
\(\Leftrightarrow x^2+3x-14+4\sqrt{\left(x-3\right)\left(x+6\right)}=x^2-x-2\)
\(\Leftrightarrow4x-12+4\sqrt{\left(x-3\right)\left(x+6\right)}=0\)
\(\Leftrightarrow\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+6\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x-3}+\sqrt{x+6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x-3}+\sqrt{x+6}=0\end{cases}}\)
+) Nếu \(\sqrt{x-3}=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
+) Nếu \(\sqrt{x-3}+\sqrt{x+6}=0\). Ta thấy: \(\hept{\begin{cases}\sqrt{x-3}\ge0\\\sqrt{x+6}\ge0\end{cases}}\forall x\in R\)
Do đó: \(\hept{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+6}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-6\end{cases}}\)\(\Rightarrow x=3\)(loại \(x=-6\) vì không t/m ĐKXĐ)
Vậy pt có một nghiệm duy nhất là x= 3.
b dễ làm trước,a ko biết làm ):
b)\(\sqrt{2+\sqrt{x}}=3\)
ĐK : \(\sqrt{x}=7\)
\(x=49\)
\(\sqrt{2+\sqrt{49}}=3\Rightarrow\sqrt{2+7}=3\Leftrightarrow\sqrt{9}=3\Rightarrow3=3\)
\(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2}-\sqrt{5-2\sqrt{5}+1}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left|\sqrt{5}-1\right|=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left(\sqrt{5}-1\right)=0\)
<=> \(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)
<=> \(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4+2\sqrt{5}\\x=-2\sqrt{5}\end{cases}}\)
b) \(\sqrt{2+\sqrt{x}}=3\)
ĐK : x ≥ 0
Bình phương hai vế
pt <=> \(2+\sqrt{x}=9\)
<=> \(\sqrt{x}=7\)
<=> \(x=49\left(tm\right)\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
Mình giải trước mấy câu dễ dễ ha.
(Tự add điều kiện vào)
Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)
Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.
Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)
Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)
Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.
-----
Câu 2: (Tư tưởng đổi biến quá rõ ràng)
Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)
(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)
-----
Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)
(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)
Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).
Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)