Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}+\left(2x+5\right)^2=8\)
\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}-2.\frac{3\left(2x+5\right)}{2\left(x+4\right)}.\left(2x+5\right)+\left(2x+5\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\left(2x+5\right)-\frac{3\left(2x+5\right)}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)
\(\Leftrightarrow\left(\frac{\left(2x+5\right)^2}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}-8=0\)
Đặt \(\frac{\left(2x+5\right)^2}{x+4}=a\)
\(\Leftrightarrow\frac{a^2}{4}+3a-8=0\)
Nghiệm xấu, bạn tự giải nốt
Thêm 5 vào hai vế suy ra:
\(\left(x^2-4x+5\right)+\frac{10}{x^2-4x+5}=7\)
Đặt \(t=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\). PT trở thành:
\(t+\frac{10}{t}=7\Leftrightarrow\frac{t^2+10}{t}=7\Leftrightarrow t^2-7t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=2\end{matrix}\right.\left(C\right)\). Với t = 5 suy ra \(x^2-4x+5=5\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với t = 2 suy ra \(x^2-4x+5=2\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\).
Vậy tập hợp nghiệm của PT là S = (0;1;3;4)
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}=a^2\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(\Rightarrow\frac{x^2}{3}+\frac{48}{x^2}=3a^2+8\)
\(3a^2+8=10a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
Lời giải:
Đặt \(x-\frac{7}{2}=a\). Khi đó PT trở thành:
\((a-\frac{3}{2})^4+(a+\frac{3}{2})^4=17\)
\(\Leftrightarrow 2a^4+27a^2+\frac{81}{8}=17\)
\(\Leftrightarrow 2a^4+27a^2=\frac{55}{8}\)
\(\Leftrightarrow a^4+\frac{27}{2}a^2=\frac{55}{16}\)
\(\Leftrightarrow (a^2+\frac{27}{4})^2=49\)
\(\Rightarrow \left[\begin{matrix} a^2+\frac{27}{4}=7\\ a^2+\frac{27}{4}=-7< 0(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow a^2=\frac{1}{4}\Rightarrow a=\pm \frac{1}{2}\)
\(\Rightarrow x=a+\frac{7}{2}=\left[\begin{matrix} 4\\ 3\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\frac{10}{x}-\frac{x}{6}=a\Rightarrow a^2=\frac{100}{x^2}+\frac{x^2}{36}-\frac{10}{3}\Rightarrow\frac{100}{x^2}+\frac{x^2}{36}=a^2+\frac{10}{3}\)
\(\Rightarrow\frac{900}{x^2}+\frac{x^2}{4}=9a^2+30\)
Phương trình trở thành:
\(9a^2+30=2+48a\)
\(\Leftrightarrow9a^2-48a+28=0\Rightarrow\left[{}\begin{matrix}a=\frac{14}{3}\\a=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{10}{x}-\frac{x}{6}=\frac{14}{3}\\\frac{10}{x}-\frac{x}{6}=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{6}+\frac{14}{3}x-10=0\\\frac{x^2}{6}+\frac{2}{3}x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x^2-x-20\right)\left(x^2-x-6\right)+24=0\)
\(\Leftrightarrow\left(x^2-x-13-7\right)\left(x^2-x-13+7\right)+24=0\)
\(\Leftrightarrow\left(x^2-x-13\right)^2-7^2+24=0\)
\(\Leftrightarrow\left(x^2-x-13\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-13=5\\x^2-x-13=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-x-18=0\\x^2-x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=18+\frac{1}{4}\\x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=8+\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{1}{2}\right)^2=\frac{73}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{33}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{73}}{2}\\x=\frac{1-\sqrt{73}}{2}\\x=\frac{1+\sqrt{33}}{2}\\x=\frac{1-\sqrt{33}}{2}\end{matrix}\right.\) ( TM )
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
Lời giải:
PT \(\Leftrightarrow [(x-5)(x-8)][(x-4)(x-10)]=72x^2\)
\(\Leftrightarrow (x^2-13x+40)(x^2-14x+40)=72x^2\)
Đặt \(x^2-13x+40=a\) thì pt trở thành:
\(a(a-x)=72x^2\)
\(\Leftrightarrow a^2-ax-72x^2=0\)
\(\Leftrightarrow a^2-9ax+8ax-72x^2=0\)
\(\Leftrightarrow a(a-9x)+8x(a-9x)=0\)
\(\Leftrightarrow (a-9x)(a+8x)=0\)
Nếu $a-9x=0$
\(\Leftrightarrow x^2-13x+40-9x=0\)
\(\Leftrightarrow x^2-22x+40=0\)
\(\Leftrightarrow (x-2)(x-20)=0\Rightarrow \left[\begin{matrix} x=2\\ x=20\end{matrix}\right.\)
Nếu $a+8x=0$
\(\Leftrightarrow x^2-13x+40+8x=0\)
\(\Leftrightarrow x^2-5x+40=0\Leftrightarrow (x-\frac{5}{2})^2=-\frac{135}{4}\) (vô lý)
Vậy........