\((x-5)^4+(x-2)^4=17\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Đặt \(x-\frac{7}{2}=a\). Khi đó PT trở thành:

\((a-\frac{3}{2})^4+(a+\frac{3}{2})^4=17\)

\(\Leftrightarrow 2a^4+27a^2+\frac{81}{8}=17\)

\(\Leftrightarrow 2a^4+27a^2=\frac{55}{8}\)

\(\Leftrightarrow a^4+\frac{27}{2}a^2=\frac{55}{16}\)

\(\Leftrightarrow (a^2+\frac{27}{4})^2=49\)

\(\Rightarrow \left[\begin{matrix} a^2+\frac{27}{4}=7\\ a^2+\frac{27}{4}=-7< 0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow a^2=\frac{1}{4}\Rightarrow a=\pm \frac{1}{2}\)

\(\Rightarrow x=a+\frac{7}{2}=\left[\begin{matrix} 4\\ 3\end{matrix}\right.\)

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)

28 tháng 6 2019

Đặt \(y=x+4\). PT trở thành:

\(\left(y-1\right)^4+\left(y+1\right)^4=16\)

Đặt y - 1 = a ; y + 1 =b. Suy ra b-a = 2

Kết hợp đề bài ta có:

\(\left\{{}\begin{matrix}a^4+b^4=16\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(4+2ab\right)^2-2a^2b^2=16\\a^2+b^2=4+2ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2b^2+16ab=0\left(1\right)\\a^2+b^2=4+2ab\end{matrix}\right.\). Xét pt (1):\(\Leftrightarrow2ab\left(ab+8\right)=0\)

Ez rồi

13 tháng 2 2020

\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)

\(\Rightarrow\frac{x-17}{33}-1+\frac{x-21}{29}-1+\frac{x}{25}-2=0\)

\(\Rightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

\(\Rightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

Dễ  thấy\(\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)>0\Rightarrow x-50=0\Rightarrow x=50\)

Vậy x = 50

13 tháng 2 2020

Ta có 

\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)

\(\Leftrightarrow\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

Mà : \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\)

\(\Rightarrow x-50=0\)

\(\Rightarrow x=50\)

Vậy : \(x=50\)

27 tháng 6 2019

\(\Leftrightarrow\left(x^2-x-20\right)\left(x^2-x-6\right)+24=0\)

\(\Leftrightarrow\left(x^2-x-13-7\right)\left(x^2-x-13+7\right)+24=0\)

\(\Leftrightarrow\left(x^2-x-13\right)^2-7^2+24=0\)

\(\Leftrightarrow\left(x^2-x-13\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-13=5\\x^2-x-13=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-x-18=0\\x^2-x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=18+\frac{1}{4}\\x^2-2x\cdot\frac{1}{2}+\frac{1}{4}=8+\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{1}{2}\right)^2=\frac{73}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{33}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{73}}{2}\\x=\frac{1-\sqrt{73}}{2}\\x=\frac{1+\sqrt{33}}{2}\\x=\frac{1-\sqrt{33}}{2}\end{matrix}\right.\) ( TM )

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

PT \(\Leftrightarrow [(x-5)(x-8)][(x-4)(x-10)]=72x^2\)

\(\Leftrightarrow (x^2-13x+40)(x^2-14x+40)=72x^2\)

Đặt \(x^2-13x+40=a\) thì pt trở thành:

\(a(a-x)=72x^2\)

\(\Leftrightarrow a^2-ax-72x^2=0\)

\(\Leftrightarrow a^2-9ax+8ax-72x^2=0\)

\(\Leftrightarrow a(a-9x)+8x(a-9x)=0\)

\(\Leftrightarrow (a-9x)(a+8x)=0\)

Nếu $a-9x=0$

\(\Leftrightarrow x^2-13x+40-9x=0\)

\(\Leftrightarrow x^2-22x+40=0\)

\(\Leftrightarrow (x-2)(x-20)=0\Rightarrow \left[\begin{matrix} x=2\\ x=20\end{matrix}\right.\)

Nếu $a+8x=0$

\(\Leftrightarrow x^2-13x+40+8x=0\)

\(\Leftrightarrow x^2-5x+40=0\Leftrightarrow (x-\frac{5}{2})^2=-\frac{135}{4}\) (vô lý)

Vậy........

27 tháng 6 2019

Đặt x + 4 = t thì pt trở thành :

\(\left(t+1\right)^4+\left(t-1\right)^4=16\)

\(\Leftrightarrow\left(t^4+4t^3+6t^2+4t+1\right)-\left(t^4-4t^3+6t^2-4t+1\right)=16\)

\(\Leftrightarrow8t^3+8t-16=0\)

\(\Leftrightarrow8\left[t^2\left(t-1\right)+t\left(t-1\right)+2\left(t-1\right)\right]=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\)

\(\Leftrightarrow t-1=0\) ( do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall t\))

\(\Leftrightarrow t=1\Leftrightarrow x=-3\) ( TM )

NV
27 tháng 6 2019

Đặt \(x+6=a\) phương trình trở thành

\(\left(a-1\right)^4+\left(a+1\right)^4=80\)

\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=80\)

\(\Leftrightarrow2a^4+12a^2+2=80\)

\(\Leftrightarrow a^4+6a^2-39=0\)

\(\Rightarrow a^2=-3+4\sqrt{3}\Rightarrow a=\pm\sqrt{-3+4\sqrt{3}}\)

\(\Rightarrow x=-6\pm\sqrt{-3+4\sqrt{3}}\)