K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

Áp dụng BĐT Cauchy- Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\geq \frac{(a+b+c+d)^2}{ab+bc+cd+da+2ac+2bd}\)

Lại có:

\((a+b+c+d)^2=[(a+c)+(b+d)]^2=(a+c)^2+(b+d)^2+2(a+c)(b+d)\)

Áp dụng BĐT Am-Gm:

\((a+c)^2+(b+d)^2\geq 4ac+4bd\)

\(\Rightarrow (a+b+c+d)^2\geq 4ac+4bd+2(ab+bc+cd+da)\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c+d)^2}{ab+bc+cd+da+2ac+2bd}\geq \frac{2(ab+bc+cd+da+2ac+2bd)}{ab+bc+cd+da+2ac+2bd}=2\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d>0\)

4 tháng 9 2018

a/Xét hiệu:

\(x+\dfrac{1}{x}\ge2\)

\(\Leftrightarrow x\ge2-\dfrac{1}{x}\)\(\Leftrightarrow x\ge\dfrac{2x-1}{x}\)

\(\Rightarrow x^2\ge2x-1\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow\left(x-1\right)^2\ge0\)

(luôn đúng)

=> Đpcm

dấu ''='' xảy ra khi x = 1

b/ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

dấu ''='' xảy ra khi a = b

4 tháng 9 2018

Cách khác

a) x>0: \(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\)

\("="\Leftrightarrow x=\dfrac{1}{x};x>0\Rightarrow x=1\)

b) a;b>0 \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

\("="\Leftrightarrow a=b\)

21 tháng 3 2018

Cô-Si là được rồi:v\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{x}}=2\)

21 tháng 3 2018

cô-si lớp 8 có học đâu Mashiro Shiina?

25 tháng 4 2017

cần giúp ko

25 tháng 4 2017

12 tháng 4 2017

Áp dụng BDDT AM-GM với các cố thực dương ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}=2}\)

Dấu"=" xảy ra\(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}\)

\(\Leftrightarrow x^2=y^2\)

\(\Leftrightarrow x=y\)

12 tháng 4 2017

bài này cũng hỏi được \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

19 tháng 2 2019

Đặt \(\frac{2a}{b+c}=t\)(t>0).Ta cần c/m: \(t+\frac{1}{t}\ge2\) (t > 0)

Thật vậy,áp dụng BĐT AM-GM (Cô si),ta có \(t+\frac{1}{t}\ge2\sqrt{t.\frac{1}{t}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow t^2=1\Leftrightarrow t=1\Leftrightarrow2a=b+c\Leftrightarrow a=b=c\)