K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

9 tháng 5 2017

Ùi mình làm theo kiểu khác thử :V, nhưng có hơi hướng giống và bổ sung :D

Câu 2 : a,b,c > 0. CM : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Giải :

C1 : Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\left(ĐPCM\right)\)

Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\).

C2 : Đầy đủ hơn với cách giải đúng của bạn Hoàng Thiên Di :

Áp dụng BĐT AM-GM cho 3 số dương (sgk là cosi :v)

\(a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\left(ĐPCM\right)\)

Câu 3 : a,b,c > 0. CM : \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

Giải :

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\ge6\)

\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge6\)

Theo bất đẳng thức Cosi : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{yx}}=2\)

Thay vào các vế được : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\sqrt{1}=2\)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\sqrt{1}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\sqrt{1}=2\)

\(\Leftrightarrow2+2+2\ge6\) (đúng)

BĐT được c/m.

9 tháng 5 2017

xem lại đề

a=b=c=1 =>3<=2

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

14 tháng 2 2018

a.

\(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2x+10-x^2-5x=0\)

\(\Leftrightarrow-x^2-3x+10=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x^2+5x\right)-\left(2x+10\right)=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

b.

\(2x^2+3x-5=0\)

\(\Leftrightarrow2x^2-2x+5x-5=0\)

\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=1\end{matrix}\right.\)

14 tháng 2 2018

bài 2:

ĐKXĐ: x khác -1

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)

\(\Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x+1}\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow0x=-1\)

\(\Leftrightarrow x\in\varnothing\)

Suy ra pt vô nghiệm

b.

ĐKXĐ: x khác \(\dfrac{3}{2}\)

\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)

\(\Leftrightarrow\dfrac{x^2+4x+4}{2x-3}-\dfrac{2x-3}{2x-3}=\dfrac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\) ( loại)