Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT
Ta có: \(\left(m-n\right)^2\ge0\)
<=> \(m^2-2m.n+n^2\ge0\)
<=> \(m^2+2m.n+n^2-4m.n\ge0\)
<=> \(\left(m+n\right)^2\ge4m.n\)
=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)
a, Áp dụng BĐT côsi ta có:
\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)
vậy \(\dfrac{1}{x}+x\ge2\) (x>0)
b, Áp dụng BĐT côsi ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0
-----------Chúc bạn học tốt -------------
Áp dụng BDDT AM-GM với các cố thực dương ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}=2}\)
Dấu"=" xảy ra\(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}\)
\(\Leftrightarrow x^2=y^2\)
\(\Leftrightarrow x=y\)
bài này cũng hỏi được \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)
ap dung BDT co si cho 2 so ko am
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}\)
<=>\(x+\dfrac{1}{x}\ge2\) (dpcm)
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
a: \(P=\dfrac{x^3-x^2+2x-2+x^2-2x+1}{x\left(x-1\right)}\)
\(=\dfrac{x^3-1}{x\left(x-1\right)}=\dfrac{x^2+x+1}{x}\)
b: x^2+x+1=(x+1/2)^2+3/4>=3/4>0
x>0
=>P>0
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)
Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)
\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)
Cộng vế với vế:
\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)
\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Dấu "=" xảy ra khi \(x=y=z\)
Cô-Si là được rồi:v\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{x}}=2\)
cô-si lớp 8 có học đâu Mashiro Shiina?