K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Cô-Si là được rồi:v\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{x}}=2\)

21 tháng 3 2018

cô-si lớp 8 có học đâu Mashiro Shiina?

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

12 tháng 4 2017

Áp dụng BDDT AM-GM với các cố thực dương ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}=2}\)

Dấu"=" xảy ra\(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}\)

\(\Leftrightarrow x^2=y^2\)

\(\Leftrightarrow x=y\)

12 tháng 4 2017

bài này cũng hỏi được \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

19 tháng 4 2018

ap dung BDT co si cho 2 so ko am

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}\)

<=>\(x+\dfrac{1}{x}\ge2\) (dpcm)

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

a: \(P=\dfrac{x^3-x^2+2x-2+x^2-2x+1}{x\left(x-1\right)}\)

\(=\dfrac{x^3-1}{x\left(x-1\right)}=\dfrac{x^2+x+1}{x}\)

b: x^2+x+1=(x+1/2)^2+3/4>=3/4>0

x>0

=>P>0

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

NV
13 tháng 4 2020

\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)

Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)

\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)

Cộng vế với vế:

\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)

\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)