K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

Áp dụng BĐT Cauchy- Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\geq \frac{(a+b+c+d)^2}{ab+bc+cd+da+2ac+2bd}\)

Lại có:

\((a+b+c+d)^2=[(a+c)+(b+d)]^2=(a+c)^2+(b+d)^2+2(a+c)(b+d)\)

Áp dụng BĐT Am-Gm:

\((a+c)^2+(b+d)^2\geq 4ac+4bd\)

\(\Rightarrow (a+b+c+d)^2\geq 4ac+4bd+2(ab+bc+cd+da)\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c+d)^2}{ab+bc+cd+da+2ac+2bd}\geq \frac{2(ab+bc+cd+da+2ac+2bd)}{ab+bc+cd+da+2ac+2bd}=2\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d>0\)

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

17 tháng 4 2018

2)

Xét hiệu:

\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)

\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)

\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)

=> BĐT luôn đúng

Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)

17 tháng 4 2018

1)

Áp dụng BĐT Cauchy cho 2 số không âm, ta có:

\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)

\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)

\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)

Từ (1)(2)(3) cộng vế theo vế:

\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)

\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)

14 tháng 3 2017

Phải sửa đề là CM biểu thức này bé hơn 2

14 tháng 3 2017

Sai đề

11 tháng 3 2018

A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)

= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

Áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)

⇔ A ≥4

=> Min A =4

dấu "=" xảy ra khi

\(\dfrac{a}{b}=\dfrac{b}{a}\)

⇔a2=b2

⇔a=b

vậy Min A =4 khi a=b

11 tháng 3 2018

b,c tương tự Nguyễn Thiện Minh

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\)

\(\geq \frac{(a+b+c+d)^2}{ab+ac+bc+bd+cd+ca+da+db}=\frac{(a+b+c+d)^2}{ab+cd+2ac+2bd+bc+da}\) (1)

Ta có:

\((a+b+c+d)^2=a^2+b^2+c^2+d^2+2ac+2bd+2(a+c)(b+d)\)

\(=a^2+b^2+c^2+d^2+2ac+2bd+2ab+2ad+2bc+2cd\)

Áp dụng BĐT AM-GM:

\(a^2+c^2\geq 2ac; b^2+d^2\geq 2bd\)

\(\Rightarrow (a+b+c+d)^2\geq 4ac+4bd+2ab+2ad+2bc+2cd\)

\(\Leftrightarrow (a+b+c+d)^2\geq 2(ab+cd+2ac+2bd+bc+da)\) (2)

Từ (1); (2) suy ra :

\(\text{VT}\geq \frac{2(ab+cd+2ac+2bd+bc+da)}{ab+cd+2ac+2bd+bc+da}=2\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=d\)

13 tháng 4 2019

Bạn nhân chéo rồi PTNT là ok

16 tháng 11 2022

a: ad=bc

=>a/b=c/d=k

=>a=bk; c=dk

b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

a/b=bk/b=k

=>(a+c)/(b+d)=a/b

c: ad=bc

nên a/c=b/d

d: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)

=>\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

7 tháng 6 2017

Giải:

Ta có:

\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)

\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)

\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)

\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)

Tương tự ta cũng có:

\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)

\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)

\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)

Cộng vế theo vế các BĐT trên ta có:

\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)

7 tháng 6 2017

undefined