Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\)
b/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{-2a}{-2b}=\dfrac{7c}{7d}=\dfrac{-2a+7c}{-2b+7d}\)
PS: Xong
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ba+bc\)
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow a< b\)(đúng)
a)Áp dụng
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)
Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)
Từ (1) và (2)=> đpcm
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có
\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
\(\text{Ta có : }\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\\ \Rightarrow\left[\left(\dfrac{2a+b}{a+b}-1\right)+\left(\dfrac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\dfrac{2c+d}{c+d}-1\right)+\left(\dfrac{2d+a}{d+a}-1\right)-1\right]=0\\ \Rightarrow\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}-1\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{d+a}-1\right)=0\\ \Rightarrow\left(\dfrac{a\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}-\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}\right)+\left(\dfrac{c\left(d+a\right)}{\left(c+d\right)\left(d+a\right)}+\dfrac{d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}-\dfrac{\left(c+d\right)\left(d+a\right)}{\left(c+d\right)\left(d+a\right)}\right)=0\\ \Rightarrow\dfrac{ab+ac+ab+b^2-ab-b^2-ac-bc}{\left(a+b\right)\left(b+c\right)}+\dfrac{cd+ac+cd+d^2-cd-d^2-ac-ad}{\left(c+d\right)\left(d+a\right)}=0\\ \Rightarrow\dfrac{ab-bc}{\left(a+b\right)\left(b+c\right)}+\dfrac{cd-ad}{\left(c+d\right)\left(d+a\right)}=0\)\(\Rightarrow\dfrac{ab-bc}{\left(a+b\right)\left(b+c\right)}=\dfrac{ad-cd}{\left(c+d\right)\left(d+a\right)}\\ \Rightarrow\dfrac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}=\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}\\ \Rightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\left(Vìa;b;c;d>0\right)\\ \Rightarrow b\left(c+d\right)\left(d+a\right)=d\left(a+b\right)\left(b+c\right)\\ \Rightarrow\left(bc+bd\right)\left(d+a\right)=\left(ad+bd\right)\left(b+c\right)\)
\(\Rightarrow bcd+bd^2+abc+abd=abd+b^2d+acd+bcd\\ \Rightarrow bd^2-b^2d=acd-abc\\ \Rightarrow bd\left(d-b\right)=ac\left(d-b\right)\\ \Rightarrow bd=ac\left(Vìd-b\ne0\right)\\ \Rightarrow abcd=ac\cdot bd=ac\cdot ac=\left(ac\right)^2\)
Vậy \(abcd\) là số chính phương
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a-c}{c}=\dfrac{bk-dk}{dk}=\dfrac{b-d}{d}\)
b: \(\dfrac{a+b}{c+d}=\dfrac{bk+b}{dk+d}=\dfrac{b}{d}\)
\(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Lớp 8:Thì cái này hiển đúng: \(\dfrac{a}{a+k}>\dfrac{a}{a+p}\forall a,p>k>0\)
\(A>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
Vậy: \(A>1\)
Tương tự:
\(A< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Vậy: A<2
Kết luận: \(1< A< 2\)
p/s: bài giải này chỉ đúng với lớp 8; nếu lớp 6 bài giải này chưa đúng.
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases}a=bk\\c=dk\end{cases}\)
Thay vào vế trái ta có:
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)
Thay vào vế phải ta có:
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)
\(\Rightarrow VP=VT=\dfrac{2k+3}{2k-3}\Rightarrow\) Đpcm
Ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
\(\Rightarrow\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (ĐPCM)
Đặt a/b=c/d=k
=>a=bk; c=dk
1: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
Do đó; \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{b^2k^2-d^2k^2}{b^2-d^2}=k^2\)
Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
Bạn nhân chéo rồi PTNT là ok
a: ad=bc
=>a/b=c/d=k
=>a=bk; c=dk
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
a/b=bk/b=k
=>(a+c)/(b+d)=a/b
c: ad=bc
nên a/c=b/d
d: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)
=>\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)