K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Mysterious Person giúp mk hehe

7 tháng 10 2018

\(a=b=c=0\) \(\Rightarrow\) đề sai

11 tháng 9 2017

bài 1) 

ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

=> \(a^2+b^2+1\ge ab+a+b\)

11 tháng 9 2017

ý 1 mk làm òi còn 2 ý kia chưa làm thui

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

18 tháng 11 2019

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

18 tháng 11 2019

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

10 tháng 7 2021

a) \(a=\sqrt{5}-1\Leftrightarrow a+2=\sqrt{5}+1\)

\(\Leftrightarrow\left(a+2\right)^2=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow a^2+4a+4=6+2\sqrt{5}\)

\(\Rightarrow a^2+4a=2+2\sqrt{5}\)

b) \(a=\sqrt{5}-1\Leftrightarrow a+1=\sqrt{5}\)

\(\Leftrightarrow\left(a+1\right)^2=5\Leftrightarrow a^2+2a+1=5\Rightarrow a^2+2a-4=0\)

c) \(\left(a^3+2a^2-4a+2\right)^{10}=\left[a\left(a^2+2a-4\right)+2\right]^{10}=\left(0+2\right)^{10}=1024\)

10 tháng 7 2021

Quên còn phần d:

Ta có: \(a=\sqrt{5}-1>\sqrt{4}-1=2-1=1\)

Lại có: \(a=\sqrt{5}-1< \sqrt{9}-1=3-1=2\)

\(\Rightarrow1< a< 2\)

3 tháng 7 2017

a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b) đề sai rồi nha

c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)

NV
25 tháng 10 2019

\(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)

Do x là nghiệm của pt nên:

\(a.\left(3+2\sqrt{2}\right)^2+b.\left(3+2\sqrt{2}\right)+1=0\)

\(\Leftrightarrow\left(17+12\sqrt{2}\right)a+\left(3+2\sqrt{2}\right)b+1=0\)

\(\Leftrightarrow\left(12a+2b\right)\sqrt{2}=-17a-3b-1\)

Do a;b là số hữu tỉ và \(\sqrt{2}\) vô tỉ nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}12a+2b=0\\-17a-3b-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\end{matrix}\right.\)

3/

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2-4b^2c^2< 0\)

\(\Leftrightarrow\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2< 0\)

\(\Leftrightarrow\left(a^2-b^2+2bc-c^2\right)\left(a^2-b^2-2bc-c^2\right)< 0\)

\(\Leftrightarrow\left[a^2-\left(b-c\right)^2\right]\left[a^2-\left(b+c\right)^2\right]< 0\)

\(\Leftrightarrow\left(a+c-b\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)< 0\) (1)

Do a;b;c là 3 cạnh của tam giác nên

\(\left\{{}\begin{matrix}a+c-b>0\\a+b-c>0\\a+b+c>0\\a-b-c< 0\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) luôn đúng

4/ \(A=x^3-3x^2+x+2=\left(x-2\right)\left(x^2-x-1\right)\)

Để A là SCP \(\Rightarrow A\ge0\Rightarrow x\ge0\)

Gọi \(ƯC\left(x-2;x^2-x-1\right)=d\)

\(\Rightarrow\left(x^2-x-1\right)-x\left(x-2\right)⋮d\)

\(\Rightarrow x-1⋮d\)

\(\Rightarrow\left(x-1\right)-\left(x-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow x^2-x-1\)\(x-2\) nguyên tố cùng nhau

\(\Rightarrow A\) là số chính phương khi và chỉ khi \(\left[{}\begin{matrix}x-2=x^2-x-1\\\left\{{}\begin{matrix}x-2=a^2\\x^2-x-1=b^2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(x-2=x^2-x-1\Rightarrow x=1\)

TH2: \(x^2-x-1=b^2\Leftrightarrow4x^2-4x-4=4b^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2b\right)^2=5\)

\(\Leftrightarrow\left(2x-2b-1\right)\left(2x+2b-1\right)=5\)

Tự giải pt ước số và thay lại kiểm tra

25 tháng 10 2019

Tặng ca nầy

Căn bậc hai. Căn bậc ba

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)