K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

2 tháng 2 2021

Trước hết, ta chứng minh bổ đề sau: Nếu \(a,b\ge1\)thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(\frac{1}{1+a}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{1+b}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\sqrt{b}\left(1+a\right)\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{a}\left(1+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)*đúng do \(\sqrt{ab}\ge1\)(vì a,b\(\ge1\))*

Áp dụng bổ đề trên, ta được: \(\left(\frac{1}{1+a^4}+\frac{1}{1+b^4}\right)+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

Tương tự: \(\left(\frac{1}{1+b^4}+\frac{1}{1+c^4}\right)+\frac{2}{1+c^4}\ge\frac{4}{1+bc^3}\)\(\left(\frac{1}{1+c^4}+\frac{1}{1+a^4}\right)+\frac{2}{1+a^4}\ge\frac{4}{1+ca^3}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)(đpcm)

23 tháng 5 2020

help me !!!!!!

23 tháng 5 2020

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

NV
15 tháng 3 2020

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

\(2VT\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^2c^2}+\frac{2}{1+c^2a^2}\)

\(\Rightarrow VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\)

\(\Rightarrow2VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^4}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^4}\frac{1}{1+c^2a^2}+\frac{1}{1+a^4}\)

\(\Rightarrow2VT\ge\frac{2}{1+ab^3}+\frac{2}{1+bc^3}+\frac{2}{1+ca^3}\)

\(\Rightarrow VT\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 11 2016

Câu 1: a)

b) Áp dụng Bđt Holder ta có:

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)

Dấu = khi a=b=c

Câu 2:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)

Dấu = khi \(a=b=\frac{1}{2}\)

Câu 3:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)

Dấu = khi \(a=b=c=\frac{1}{3}\)

Câu 4: nghĩ sau

28 tháng 5 2019

#)Trả lời :

  Bạn tham khảo nha : Câu hỏi của Nguyễn Trương Hoài Nam - Toán lớp 7 - Học toán với OnlineMath

  Link : https://olm.vn/hoi-dap/detail/66344373938.html

  Bạn vô câu hỏi tương tự ý cho nhanh, ngay đầu bảng luôn ^^

           #~Will~be~Pens~#

28 tháng 5 2019

Trả lời :

 Bạn vào tham khảo nha !

https://olm.vn/hoi-dap/detail/66344373938.html

Nếu không thì bạn ấn vào câu hỏi tương tự nha !

Chúc bạn học tốt !

6 tháng 4 2018

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

6 tháng 3 2020

Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được

\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))

\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)