K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

x+ 2x + 2  

= x2 + x + x + 1 + 1

= ( x2 + x ) + ( x + 1 ) + 1

= x.( x + 1 ) + ( x + 1 )

= ( x + 1 ) . ( x + 1 ) + 1

= ( x + 1 )2 + 1 > 0 + 1 > 0

=> Đa thức trên vô nghiệm

9 tháng 2 2018

Vì \(x^2+2x>0\left(\forall x\in Z\right)\Rightarrow x^2+2x+2>2\)

=> Đa thức không có nghiệm

13 tháng 5 2018

Vì \(H\left(x\right)=2x^2+1\ge1>0\)

Nên đa thức trên vô nghiệm 

13 tháng 5 2018

\(2x^2+1\ge1\forall x\)

Vậy đa thức H(x) vô nghiệm 

13 tháng 5 2017

x2 + 2x + 2

= x2 + x + x + 1 + 1

= x(x+1) + 1(x+1) + 1

= (x+1).(x+1)+1

= (x+1)2+1. Vì (x+1)2\(\ge\)0 \(\forall\) x

\(\Rightarrow\)(x+1)2+1 > 1 \(\forall\) x

Vậy đa thức trên vô nghiệm

13 tháng 5 2017

A = x\(^2\) + 2x + 2

= x\(^2\) + 2x + 1 + 1

= (1 + 1)\(^2\) + 1. Để thấy:

(x + 1)\(^2\) \(\ge\)0\(\forall\)x \(\Rightarrow\) (x + 1)\(^2\) + 1 >0\(\forall\)x

Vậy đa thức x\(^2\) + 2x + 2 không có nghiệm.

8 tháng 8 2021

Ta có: 

x^4+2x^3+2x^2+1

=x^2(x^2+2x+2)+1

Ta thấy x^2(x^2+2x+2)> hoặc =0 nên 

x^2(x^2+2x+2)+1>0 nên ko có nghiệm

Chúc học tốt

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)

13 tháng 4 2016

Ta có: x^2 >= 0 với mọi x

          2*x >= 0 với mioj x

       => x^2 + 2*x +2 >= 2 với mọi x

       => x^2 + 2*x + 2 không có nghiệm

13 tháng 4 2016

ta có : x2 lớn hơn hoặc bằng 0. với mọi x

        suy ra x2 +2x +2 lớn hơn 0. với mọi x

         suy ra x^2 +2x+2 k có ngiệm

30 tháng 4 2016

a) 3x+4=0

x= - 4/3

b) x2+4 >0 voi mọi x nên M(x) vô nghiệm

13 tháng 5 2016

1)Vì x2 \(\ge\) 0 với mọi x E R

=>x2+1 \(\ge\) 1 > 0 với mọi x E R

=>đa thức vô nghiệm

2)Vì 2x6 \(\ge\) 0 với mọi x E R

4x4 \(\ge\) 0 với mọi x E R;x2 \(\ge\) 0 với mọi x E R

=>2x6+4x4+x2+2 \(\ge\) 2 > 0 với mọi x

=>đa thức vô nghiệm